| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imbi12i | Unicode version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| imbi12i.1 | 
 | 
| imbi12i.2 | 
 | 
| Ref | Expression | 
|---|---|
| imbi12i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imbi12i.2 | 
. . 3
 | |
| 2 | 1 | imbi2i 226 | 
. 2
 | 
| 3 | imbi12i.1 | 
. . 3
 | |
| 4 | 3 | imbi1i 238 | 
. 2
 | 
| 5 | 2, 4 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: stdcn 848 dcfromcon 1459 dcfrompeirce 1460 nfbii 1487 sbi2v 1907 sbim 1972 sb8mo 2059 cbvmo 2085 necon4ddc 2439 raleqbii 2509 rmo5 2717 cbvrmo 2728 ss2ab 3251 snsssn 3791 trint 4146 ssextss 4253 ordsoexmid 4598 zfregfr 4610 tfi 4618 peano2 4631 peano5 4634 relop 4816 dmcosseq 4937 cotr 5051 issref 5052 cnvsym 5053 intasym 5054 intirr 5056 codir 5058 qfto 5059 cnvpom 5212 cnvsom 5213 funcnvuni 5327 poxp 6290 infmoti 7094 dfinfre 8983 bezoutlembi 12172 algcvgblem 12217 isprm2 12285 ntreq0 14368 ss1oel2o 15638 | 
| Copyright terms: Public domain | W3C validator |