| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi12i | Unicode version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 |
|
| imbi12i.2 |
|
| Ref | Expression |
|---|---|
| imbi12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.2 |
. . 3
| |
| 2 | 1 | imbi2i 226 |
. 2
|
| 3 | imbi12i.1 |
. . 3
| |
| 4 | 3 | imbi1i 238 |
. 2
|
| 5 | 2, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: stdcn 852 dcfromcon 1491 dcfrompeirce 1492 nfbii 1519 sbi2v 1939 sbim 2004 sb8mo 2091 cbvmo 2117 necon4ddc 2472 raleqbii 2542 rmo5 2752 cbvrmo 2764 ss2ab 3292 snsssn 3839 trint 4197 ssextss 4306 ordsoexmid 4654 zfregfr 4666 tfi 4674 peano2 4687 peano5 4690 relop 4872 dmcosseq 4996 cotr 5110 issref 5111 cnvsym 5112 intasym 5113 intirr 5115 codir 5117 qfto 5118 cnvpom 5271 cnvsom 5272 funcnvuni 5390 poxp 6378 infmoti 7195 dfinfre 9103 bezoutlembi 12526 algcvgblem 12571 isprm2 12639 ntreq0 14806 ss1oel2o 16355 |
| Copyright terms: Public domain | W3C validator |