Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imbi12i | Unicode version |
Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12i.1 | |
imbi12i.2 |
Ref | Expression |
---|---|
imbi12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12i.2 | . . 3 | |
2 | 1 | imbi2i 225 | . 2 |
3 | imbi12i.1 | . . 3 | |
4 | 3 | imbi1i 237 | . 2 |
5 | 2, 4 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: stdcn 837 nfbii 1461 sbi2v 1880 sbim 1941 sb8mo 2028 cbvmo 2054 necon4ddc 2408 raleqbii 2478 rmo5 2681 cbvrmo 2691 ss2ab 3210 snsssn 3741 trint 4095 ssextss 4198 ordsoexmid 4539 zfregfr 4551 tfi 4559 peano2 4572 peano5 4575 relop 4754 dmcosseq 4875 cotr 4985 issref 4986 cnvsym 4987 intasym 4988 intirr 4990 codir 4992 qfto 4993 cnvpom 5146 cnvsom 5147 funcnvuni 5257 poxp 6200 infmoti 6993 dfinfre 8851 bezoutlembi 11938 algcvgblem 11981 isprm2 12049 ntreq0 12772 ss1oel2o 13873 |
Copyright terms: Public domain | W3C validator |