![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi12i | Unicode version |
Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
imbi12i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imbi12i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | imbi2i 226 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | imbi12i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | imbi1i 238 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: stdcn 848 nfbii 1484 sbi2v 1904 sbim 1969 sb8mo 2056 cbvmo 2082 necon4ddc 2436 raleqbii 2506 rmo5 2714 cbvrmo 2725 ss2ab 3247 snsssn 3787 trint 4142 ssextss 4249 ordsoexmid 4594 zfregfr 4606 tfi 4614 peano2 4627 peano5 4630 relop 4812 dmcosseq 4933 cotr 5047 issref 5048 cnvsym 5049 intasym 5050 intirr 5052 codir 5054 qfto 5055 cnvpom 5208 cnvsom 5209 funcnvuni 5323 poxp 6285 infmoti 7087 dfinfre 8975 bezoutlembi 12142 algcvgblem 12187 isprm2 12255 ntreq0 14300 ss1oel2o 15484 |
Copyright terms: Public domain | W3C validator |