| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi12i | Unicode version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 |
|
| imbi12i.2 |
|
| Ref | Expression |
|---|---|
| imbi12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.2 |
. . 3
| |
| 2 | 1 | imbi2i 226 |
. 2
|
| 3 | imbi12i.1 |
. . 3
| |
| 4 | 3 | imbi1i 238 |
. 2
|
| 5 | 2, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: stdcn 849 dcfromcon 1469 dcfrompeirce 1470 nfbii 1497 sbi2v 1917 sbim 1982 sb8mo 2069 cbvmo 2095 necon4ddc 2450 raleqbii 2520 rmo5 2729 cbvrmo 2741 ss2ab 3269 snsssn 3815 trint 4173 ssextss 4282 ordsoexmid 4628 zfregfr 4640 tfi 4648 peano2 4661 peano5 4664 relop 4846 dmcosseq 4969 cotr 5083 issref 5084 cnvsym 5085 intasym 5086 intirr 5088 codir 5090 qfto 5091 cnvpom 5244 cnvsom 5245 funcnvuni 5362 poxp 6341 infmoti 7156 dfinfre 9064 bezoutlembi 12441 algcvgblem 12486 isprm2 12554 ntreq0 14719 ss1oel2o 16127 |
| Copyright terms: Public domain | W3C validator |