| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi12i | Unicode version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 |
|
| imbi12i.2 |
|
| Ref | Expression |
|---|---|
| imbi12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.2 |
. . 3
| |
| 2 | 1 | imbi2i 226 |
. 2
|
| 3 | imbi12i.1 |
. . 3
| |
| 4 | 3 | imbi1i 238 |
. 2
|
| 5 | 2, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: stdcn 849 dcfromcon 1468 dcfrompeirce 1469 nfbii 1496 sbi2v 1916 sbim 1981 sb8mo 2068 cbvmo 2094 necon4ddc 2448 raleqbii 2518 rmo5 2726 cbvrmo 2737 ss2ab 3261 snsssn 3802 trint 4158 ssextss 4265 ordsoexmid 4611 zfregfr 4623 tfi 4631 peano2 4644 peano5 4647 relop 4829 dmcosseq 4951 cotr 5065 issref 5066 cnvsym 5067 intasym 5068 intirr 5070 codir 5072 qfto 5073 cnvpom 5226 cnvsom 5227 funcnvuni 5344 poxp 6320 infmoti 7132 dfinfre 9031 bezoutlembi 12359 algcvgblem 12404 isprm2 12472 ntreq0 14637 ss1oel2o 15965 |
| Copyright terms: Public domain | W3C validator |