ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrmo Unicode version

Theorem cbvrmo 2728
Description: Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
cbvral.1  |-  F/ y
ph
cbvral.2  |-  F/ x ps
cbvral.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrmo  |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvrmo
StepHypRef Expression
1 cbvral.1 . . . 4  |-  F/ y
ph
2 cbvral.2 . . . 4  |-  F/ x ps
3 cbvral.3 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvrex 2726 . . 3  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
51, 2, 3cbvreu 2727 . . 3  |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
64, 5imbi12i 239 . 2  |-  ( ( E. x  e.  A  ph 
->  E! x  e.  A  ph )  <->  ( E. y  e.  A  ps  ->  E! y  e.  A  ps ) )
7 rmo5 2717 . 2  |-  ( E* x  e.  A  ph  <->  ( E. x  e.  A  ph 
->  E! x  e.  A  ph ) )
8 rmo5 2717 . 2  |-  ( E* y  e.  A  ps  <->  ( E. y  e.  A  ps  ->  E! y  e.  A  ps ) )
96, 7, 83bitr4i 212 1  |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1474   E.wrex 2476   E!wreu 2477   E*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-reu 2482  df-rmo 2483
This theorem is referenced by:  cbvrmov  2732  cbvdisj  4020
  Copyright terms: Public domain W3C validator