| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 |
. 2
| |
| 2 | sp 1525 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: rspa 2545 rsp2 2547 rspec 2549 r19.12 2603 ralbi 2629 rexbi 2630 reupick2 3450 dfiun2g 3949 iinss2 3970 invdisj 4028 mpteq12f 4114 trss 4141 sowlin 4356 reusv1 4494 reusv3 4496 ralxfrALT 4503 funimaexglem 5342 fun11iun 5526 fvmptssdm 5647 ffnfv 5721 riota5f 5903 mpoeq123 5982 tfri3 6426 nneneq 6919 mkvprop 7225 cauappcvgprlemladdru 7725 cauappcvgprlemladdrl 7726 caucvgprlemm 7737 suplocexprlemss 7784 suplocsrlem 7877 indstr 9669 nninfinf 10537 prodeq2 11724 fprodle 11807 bezoutlemzz 12179 sgrpidmndm 13071 srgdilem 13535 ringdilem 13578 tgcl 14310 fsumcncntop 14813 dedekindeulemlu 14867 dedekindicclemlu 14876 bj-rspgt 15442 bj-charfunr 15466 |
| Copyright terms: Public domain | W3C validator |