| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 |
. 2
| |
| 2 | sp 1557 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: rspa 2578 rsp2 2580 rspec 2582 r19.12 2637 ralbi 2663 rexbi 2664 reupick2 3490 dfiun2g 3997 iinss2 4018 invdisj 4076 mpteq12f 4164 trss 4191 sowlin 4411 reusv1 4549 reusv3 4551 ralxfrALT 4558 funimaexglem 5404 fun11iun 5593 fvmptssdm 5719 ffnfv 5793 riota5f 5981 mpoeq123 6063 tfri3 6513 nneneq 7018 mkvprop 7325 cauappcvgprlemladdru 7843 cauappcvgprlemladdrl 7844 caucvgprlemm 7855 suplocexprlemss 7902 suplocsrlem 7995 indstr 9788 nninfinf 10665 prodeq2 12068 fprodle 12151 bezoutlemzz 12523 sgrpidmndm 13453 srgdilem 13932 ringdilem 13975 tgcl 14738 fsumcncntop 15241 dedekindeulemlu 15295 dedekindicclemlu 15304 bj-rspgt 16150 bj-charfunr 16173 |
| Copyright terms: Public domain | W3C validator |