ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rsp Unicode version

Theorem rsp 2555
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.)
Assertion
Ref Expression
rsp  |-  ( A. x  e.  A  ph  ->  ( x  e.  A  ->  ph ) )

Proof of Theorem rsp
StepHypRef Expression
1 df-ral 2491 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
2 sp 1535 . 2  |-  ( A. x ( x  e.  A  ->  ph )  -> 
( x  e.  A  ->  ph ) )
31, 2sylbi 121 1  |-  ( A. x  e.  A  ph  ->  ( x  e.  A  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    e. wcel 2178   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-ral 2491
This theorem is referenced by:  rspa  2556  rsp2  2558  rspec  2560  r19.12  2614  ralbi  2640  rexbi  2641  reupick2  3467  dfiun2g  3973  iinss2  3994  invdisj  4052  mpteq12f  4140  trss  4167  sowlin  4385  reusv1  4523  reusv3  4525  ralxfrALT  4532  funimaexglem  5376  fun11iun  5565  fvmptssdm  5687  ffnfv  5761  riota5f  5947  mpoeq123  6027  tfri3  6476  nneneq  6979  mkvprop  7286  cauappcvgprlemladdru  7804  cauappcvgprlemladdrl  7805  caucvgprlemm  7816  suplocexprlemss  7863  suplocsrlem  7956  indstr  9749  nninfinf  10625  prodeq2  11983  fprodle  12066  bezoutlemzz  12438  sgrpidmndm  13367  srgdilem  13846  ringdilem  13889  tgcl  14651  fsumcncntop  15154  dedekindeulemlu  15208  dedekindicclemlu  15217  bj-rspgt  15922  bj-charfunr  15945
  Copyright terms: Public domain W3C validator