| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2491 |
. 2
| |
| 2 | sp 1535 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-ral 2491 |
| This theorem is referenced by: rspa 2556 rsp2 2558 rspec 2560 r19.12 2614 ralbi 2640 rexbi 2641 reupick2 3467 dfiun2g 3973 iinss2 3994 invdisj 4052 mpteq12f 4140 trss 4167 sowlin 4385 reusv1 4523 reusv3 4525 ralxfrALT 4532 funimaexglem 5376 fun11iun 5565 fvmptssdm 5687 ffnfv 5761 riota5f 5947 mpoeq123 6027 tfri3 6476 nneneq 6979 mkvprop 7286 cauappcvgprlemladdru 7804 cauappcvgprlemladdrl 7805 caucvgprlemm 7816 suplocexprlemss 7863 suplocsrlem 7956 indstr 9749 nninfinf 10625 prodeq2 11983 fprodle 12066 bezoutlemzz 12438 sgrpidmndm 13367 srgdilem 13846 ringdilem 13889 tgcl 14651 fsumcncntop 15154 dedekindeulemlu 15208 dedekindicclemlu 15217 bj-rspgt 15922 bj-charfunr 15945 |
| Copyright terms: Public domain | W3C validator |