| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 |
. 2
| |
| 2 | sp 1534 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1533 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: rspa 2554 rsp2 2556 rspec 2558 r19.12 2612 ralbi 2638 rexbi 2639 reupick2 3459 dfiun2g 3959 iinss2 3980 invdisj 4038 mpteq12f 4125 trss 4152 sowlin 4368 reusv1 4506 reusv3 4508 ralxfrALT 4515 funimaexglem 5358 fun11iun 5545 fvmptssdm 5666 ffnfv 5740 riota5f 5926 mpoeq123 6006 tfri3 6455 nneneq 6956 mkvprop 7262 cauappcvgprlemladdru 7771 cauappcvgprlemladdrl 7772 caucvgprlemm 7783 suplocexprlemss 7830 suplocsrlem 7923 indstr 9716 nninfinf 10590 prodeq2 11901 fprodle 11984 bezoutlemzz 12356 sgrpidmndm 13285 srgdilem 13764 ringdilem 13807 tgcl 14569 fsumcncntop 15072 dedekindeulemlu 15126 dedekindicclemlu 15135 bj-rspgt 15759 bj-charfunr 15783 |
| Copyright terms: Public domain | W3C validator |