| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 |
. 2
| |
| 2 | sp 1525 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: rspa 2545 rsp2 2547 rspec 2549 r19.12 2603 ralbi 2629 rexbi 2630 reupick2 3449 dfiun2g 3948 iinss2 3969 invdisj 4027 mpteq12f 4113 trss 4140 sowlin 4355 reusv1 4493 reusv3 4495 ralxfrALT 4502 funimaexglem 5341 fun11iun 5525 fvmptssdm 5646 ffnfv 5720 riota5f 5902 mpoeq123 5981 tfri3 6425 nneneq 6918 mkvprop 7224 cauappcvgprlemladdru 7723 cauappcvgprlemladdrl 7724 caucvgprlemm 7735 suplocexprlemss 7782 suplocsrlem 7875 indstr 9667 nninfinf 10535 prodeq2 11722 fprodle 11805 bezoutlemzz 12169 sgrpidmndm 13061 srgdilem 13525 ringdilem 13568 tgcl 14300 fsumcncntop 14803 dedekindeulemlu 14857 dedekindicclemlu 14866 bj-rspgt 15432 bj-charfunr 15456 |
| Copyright terms: Public domain | W3C validator |