| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 |
. 2
| |
| 2 | sp 1534 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1533 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: rspa 2554 rsp2 2556 rspec 2558 r19.12 2612 ralbi 2638 rexbi 2639 reupick2 3459 dfiun2g 3959 iinss2 3980 invdisj 4038 mpteq12f 4124 trss 4151 sowlin 4367 reusv1 4505 reusv3 4507 ralxfrALT 4514 funimaexglem 5357 fun11iun 5543 fvmptssdm 5664 ffnfv 5738 riota5f 5924 mpoeq123 6004 tfri3 6453 nneneq 6954 mkvprop 7260 cauappcvgprlemladdru 7769 cauappcvgprlemladdrl 7770 caucvgprlemm 7781 suplocexprlemss 7828 suplocsrlem 7921 indstr 9714 nninfinf 10588 prodeq2 11868 fprodle 11951 bezoutlemzz 12323 sgrpidmndm 13252 srgdilem 13731 ringdilem 13774 tgcl 14536 fsumcncntop 15039 dedekindeulemlu 15093 dedekindicclemlu 15102 bj-rspgt 15722 bj-charfunr 15746 |
| Copyright terms: Public domain | W3C validator |