Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rsp | Unicode version |
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
rsp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2458 | . 2 | |
2 | sp 1509 | . 2 | |
3 | 1, 2 | sylbi 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1351 wcel 2146 wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1508 |
This theorem depends on definitions: df-bi 117 df-ral 2458 |
This theorem is referenced by: rspa 2523 rsp2 2525 rspec 2527 r19.12 2581 ralbi 2607 rexbi 2608 reupick2 3419 dfiun2g 3914 iinss2 3934 invdisj 3992 mpteq12f 4078 trss 4105 sowlin 4314 reusv1 4452 reusv3 4454 ralxfrALT 4461 funimaexglem 5291 fun11iun 5474 fvmptssdm 5592 ffnfv 5666 riota5f 5845 mpoeq123 5924 tfri3 6358 nneneq 6847 mkvprop 7146 cauappcvgprlemladdru 7630 cauappcvgprlemladdrl 7631 caucvgprlemm 7642 suplocexprlemss 7689 suplocsrlem 7782 indstr 9564 prodeq2 11531 fprodle 11614 bezoutlemzz 11968 sgrpidmndm 12685 srgdilem 12947 ringdilem 12990 tgcl 13133 fsumcncntop 13625 dedekindeulemlu 13668 dedekindicclemlu 13677 bj-rspgt 14096 bj-charfunr 14120 |
Copyright terms: Public domain | W3C validator |