ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspe Unicode version

Theorem rspe 2539
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.)
Assertion
Ref Expression
rspe  |-  ( ( x  e.  A  /\  ph )  ->  E. x  e.  A  ph )

Proof of Theorem rspe
StepHypRef Expression
1 19.8a 1601 . 2  |-  ( ( x  e.  A  /\  ph )  ->  E. x
( x  e.  A  /\  ph ) )
2 df-rex 2474 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
31, 2sylibr 134 1  |-  ( ( x  e.  A  /\  ph )  ->  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1503    e. wcel 2160   E.wrex 2469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521
This theorem depends on definitions:  df-bi 117  df-rex 2474
This theorem is referenced by:  rsp2e  2541  ssiun2  3944  tfrlem9  6343  tfrlemibxssdm  6351  tfr1onlembxssdm  6367  tfrcllembxssdm  6380  findcard2  6916  findcard2s  6917  prarloclemup  7523  prmuloc2  7595  ltaddpr  7625  aptiprlemu  7668  cauappcvgprlemopl  7674  cauappcvgprlemopu  7676  cauappcvgprlem2  7688  caucvgprlemopl  7697  caucvgprlemopu  7699  caucvgprlem2  7708  caucvgprprlem2  7738  suplocexprlemrl  7745  suplocexprlemru  7747  suplocexprlemlub  7752
  Copyright terms: Public domain W3C validator