| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspe | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1636 |
. 2
| |
| 2 | df-rex 2514 |
. 2
| |
| 3 | 1, 2 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-rex 2514 |
| This theorem is referenced by: rsp2e 2581 ssiun2 4007 tfrlem9 6463 tfrlemibxssdm 6471 tfr1onlembxssdm 6487 tfrcllembxssdm 6500 findcard2 7047 findcard2s 7048 prarloclemup 7678 prmuloc2 7750 ltaddpr 7780 aptiprlemu 7823 cauappcvgprlemopl 7829 cauappcvgprlemopu 7831 cauappcvgprlem2 7843 caucvgprlemopl 7852 caucvgprlemopu 7854 caucvgprlem2 7863 caucvgprprlem2 7893 suplocexprlemrl 7900 suplocexprlemru 7902 suplocexprlemlub 7907 |
| Copyright terms: Public domain | W3C validator |