| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspe | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1604 |
. 2
| |
| 2 | df-rex 2481 |
. 2
| |
| 3 | 1, 2 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-rex 2481 |
| This theorem is referenced by: rsp2e 2548 ssiun2 3959 tfrlem9 6377 tfrlemibxssdm 6385 tfr1onlembxssdm 6401 tfrcllembxssdm 6414 findcard2 6950 findcard2s 6951 prarloclemup 7562 prmuloc2 7634 ltaddpr 7664 aptiprlemu 7707 cauappcvgprlemopl 7713 cauappcvgprlemopu 7715 cauappcvgprlem2 7727 caucvgprlemopl 7736 caucvgprlemopu 7738 caucvgprlem2 7747 caucvgprprlem2 7777 suplocexprlemrl 7784 suplocexprlemru 7786 suplocexprlemlub 7791 |
| Copyright terms: Public domain | W3C validator |