| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspe | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1612 |
. 2
| |
| 2 | df-rex 2489 |
. 2
| |
| 3 | 1, 2 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 |
| This theorem depends on definitions: df-bi 117 df-rex 2489 |
| This theorem is referenced by: rsp2e 2556 ssiun2 3969 tfrlem9 6395 tfrlemibxssdm 6403 tfr1onlembxssdm 6419 tfrcllembxssdm 6432 findcard2 6968 findcard2s 6969 prarloclemup 7590 prmuloc2 7662 ltaddpr 7692 aptiprlemu 7735 cauappcvgprlemopl 7741 cauappcvgprlemopu 7743 cauappcvgprlem2 7755 caucvgprlemopl 7764 caucvgprlemopu 7766 caucvgprlem2 7775 caucvgprprlem2 7805 suplocexprlemrl 7812 suplocexprlemru 7814 suplocexprlemlub 7819 |
| Copyright terms: Public domain | W3C validator |