| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspe | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1612 |
. 2
| |
| 2 | df-rex 2489 |
. 2
| |
| 3 | 1, 2 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 |
| This theorem depends on definitions: df-bi 117 df-rex 2489 |
| This theorem is referenced by: rsp2e 2556 ssiun2 3969 tfrlem9 6404 tfrlemibxssdm 6412 tfr1onlembxssdm 6428 tfrcllembxssdm 6441 findcard2 6985 findcard2s 6986 prarloclemup 7607 prmuloc2 7679 ltaddpr 7709 aptiprlemu 7752 cauappcvgprlemopl 7758 cauappcvgprlemopu 7760 cauappcvgprlem2 7772 caucvgprlemopl 7781 caucvgprlemopu 7783 caucvgprlem2 7792 caucvgprprlem2 7822 suplocexprlemrl 7829 suplocexprlemru 7831 suplocexprlemlub 7836 |
| Copyright terms: Public domain | W3C validator |