| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspe | Unicode version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1614 |
. 2
| |
| 2 | df-rex 2491 |
. 2
| |
| 3 | 1, 2 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-rex 2491 |
| This theorem is referenced by: rsp2e 2558 ssiun2 3976 tfrlem9 6418 tfrlemibxssdm 6426 tfr1onlembxssdm 6442 tfrcllembxssdm 6455 findcard2 7001 findcard2s 7002 prarloclemup 7628 prmuloc2 7700 ltaddpr 7730 aptiprlemu 7773 cauappcvgprlemopl 7779 cauappcvgprlemopu 7781 cauappcvgprlem2 7793 caucvgprlemopl 7802 caucvgprlemopu 7804 caucvgprlem2 7813 caucvgprprlem2 7843 suplocexprlemrl 7850 suplocexprlemru 7852 suplocexprlemlub 7857 |
| Copyright terms: Public domain | W3C validator |