ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspe Unicode version

Theorem rspe 2543
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.)
Assertion
Ref Expression
rspe  |-  ( ( x  e.  A  /\  ph )  ->  E. x  e.  A  ph )

Proof of Theorem rspe
StepHypRef Expression
1 19.8a 1601 . 2  |-  ( ( x  e.  A  /\  ph )  ->  E. x
( x  e.  A  /\  ph ) )
2 df-rex 2478 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
31, 2sylibr 134 1  |-  ( ( x  e.  A  /\  ph )  ->  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1503    e. wcel 2164   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521
This theorem depends on definitions:  df-bi 117  df-rex 2478
This theorem is referenced by:  rsp2e  2545  ssiun2  3956  tfrlem9  6374  tfrlemibxssdm  6382  tfr1onlembxssdm  6398  tfrcllembxssdm  6411  findcard2  6947  findcard2s  6948  prarloclemup  7557  prmuloc2  7629  ltaddpr  7659  aptiprlemu  7702  cauappcvgprlemopl  7708  cauappcvgprlemopu  7710  cauappcvgprlem2  7722  caucvgprlemopl  7731  caucvgprlemopu  7733  caucvgprlem2  7742  caucvgprprlem2  7772  suplocexprlemrl  7779  suplocexprlemru  7781  suplocexprlemlub  7786
  Copyright terms: Public domain W3C validator