Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspe | Unicode version |
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
rspe |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1588 | . 2 | |
2 | df-rex 2459 | . 2 | |
3 | 1, 2 | sylibr 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wex 1490 wcel 2146 wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 |
This theorem depends on definitions: df-bi 117 df-rex 2459 |
This theorem is referenced by: rsp2e 2526 ssiun2 3925 tfrlem9 6310 tfrlemibxssdm 6318 tfr1onlembxssdm 6334 tfrcllembxssdm 6347 findcard2 6879 findcard2s 6880 prarloclemup 7469 prmuloc2 7541 ltaddpr 7571 aptiprlemu 7614 cauappcvgprlemopl 7620 cauappcvgprlemopu 7622 cauappcvgprlem2 7634 caucvgprlemopl 7643 caucvgprlemopu 7645 caucvgprlem2 7654 caucvgprprlem2 7684 suplocexprlemrl 7691 suplocexprlemru 7693 suplocexprlemlub 7698 |
Copyright terms: Public domain | W3C validator |