ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbbidh Unicode version

Theorem sbbidh 1868
Description: Deduction substituting both sides of a biconditional. New proofs should use sbbid 1869 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbbidh.1  |-  ( ph  ->  A. x ph )
sbbidh.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
sbbidh  |-  ( ph  ->  ( [ y  /  x ] ps  <->  [ y  /  x ] ch )
)

Proof of Theorem sbbidh
StepHypRef Expression
1 sbbidh.1 . . 3  |-  ( ph  ->  A. x ph )
2 sbbidh.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2alrimih 1492 . 2  |-  ( ph  ->  A. x ( ps  <->  ch ) )
4 spsbbi 1867 . 2  |-  ( A. x ( ps  <->  ch )  ->  ( [ y  /  x ] ps  <->  [ y  /  x ] ch )
)
53, 4syl 14 1  |-  ( ph  ->  ( [ y  /  x ] ps  <->  [ y  /  x ] ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-sb 1786
This theorem is referenced by:  sbcomxyyz  2000
  Copyright terms: Public domain W3C validator