Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbbid | Unicode version |
Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
sbbid.1 | |
sbbid.2 |
Ref | Expression |
---|---|
sbbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbid.1 | . . 3 | |
2 | sbbid.2 | . . 3 | |
3 | 1, 2 | alrimi 1510 | . 2 |
4 | spsbbi 1832 | . 2 | |
5 | 3, 4 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wnf 1448 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: bezoutlemmain 11931 |
Copyright terms: Public domain | W3C validator |