Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbbidh | GIF version |
Description: Deduction substituting both sides of a biconditional. New proofs should use sbbid 1839 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbbidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
sbbidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbbidh | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbidh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | sbbidh.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | alrimih 1462 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
4 | spsbbi 1837 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) | |
5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: sbcomxyyz 1965 |
Copyright terms: Public domain | W3C validator |