| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbied | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1805). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbied.1 |
|
| sbied.2 |
|
| sbied.3 |
|
| Ref | Expression |
|---|---|
| sbied |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbied.1 |
. . 3
| |
| 2 | 1 | nfri 1533 |
. 2
|
| 3 | sbied.2 |
. . 3
| |
| 4 | 3 | nfrd 1534 |
. 2
|
| 5 | sbied.3 |
. 2
| |
| 6 | 2, 4, 5 | sbiedh 1801 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: sbiedv 1803 dvelimdf 2035 cbvrald 15518 |
| Copyright terms: Public domain | W3C validator |