ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbiedh Unicode version

Theorem sbiedh 1717
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbieh 1720). New proofs should use sbied 1718 instead. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbiedh.1  |-  ( ph  ->  A. x ph )
sbiedh.2  |-  ( ph  ->  ( ch  ->  A. x ch ) )
sbiedh.3  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
Assertion
Ref Expression
sbiedh  |-  ( ph  ->  ( [ y  /  x ] ps  <->  ch )
)

Proof of Theorem sbiedh
StepHypRef Expression
1 sb1 1696 . . . 4  |-  ( [ y  /  x ] ps  ->  E. x ( x  =  y  /\  ps ) )
2 sbiedh.1 . . . . 5  |-  ( ph  ->  A. x ph )
3 sbiedh.3 . . . . . . 7  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
4 bi1 116 . . . . . . 7  |-  ( ( ps  <->  ch )  ->  ( ps  ->  ch ) )
53, 4syl6 33 . . . . . 6  |-  ( ph  ->  ( x  =  y  ->  ( ps  ->  ch ) ) )
65impd 251 . . . . 5  |-  ( ph  ->  ( ( x  =  y  /\  ps )  ->  ch ) )
72, 6eximdh 1547 . . . 4  |-  ( ph  ->  ( E. x ( x  =  y  /\  ps )  ->  E. x ch ) )
81, 7syl5 32 . . 3  |-  ( ph  ->  ( [ y  /  x ] ps  ->  E. x ch ) )
9 sbiedh.2 . . . 4  |-  ( ph  ->  ( ch  ->  A. x ch ) )
102, 919.9hd 1597 . . 3  |-  ( ph  ->  ( E. x ch 
->  ch ) )
118, 10syld 44 . 2  |-  ( ph  ->  ( [ y  /  x ] ps  ->  ch ) )
12 bi2 128 . . . . . . 7  |-  ( ( ps  <->  ch )  ->  ( ch  ->  ps ) )
133, 12syl6 33 . . . . . 6  |-  ( ph  ->  ( x  =  y  ->  ( ch  ->  ps ) ) )
1413com23 77 . . . . 5  |-  ( ph  ->  ( ch  ->  (
x  =  y  ->  ps ) ) )
152, 14alimdh 1401 . . . 4  |-  ( ph  ->  ( A. x ch 
->  A. x ( x  =  y  ->  ps ) ) )
16 sb2 1697 . . . 4  |-  ( A. x ( x  =  y  ->  ps )  ->  [ y  /  x ] ps )
1715, 16syl6 33 . . 3  |-  ( ph  ->  ( A. x ch 
->  [ y  /  x ] ps ) )
189, 17syld 44 . 2  |-  ( ph  ->  ( ch  ->  [ y  /  x ] ps ) )
1911, 18impbid 127 1  |-  ( ph  ->  ( [ y  /  x ] ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1287   E.wex 1426   [wsb 1692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-i9 1468  ax-ial 1472
This theorem depends on definitions:  df-bi 115  df-sb 1693
This theorem is referenced by:  sbied  1718  sbieh  1720  sbcomxyyz  1894
  Copyright terms: Public domain W3C validator