ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbiedv Unicode version

Theorem sbiedv 1812
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1814). (Contributed by NM, 7-Jan-2017.)
Hypothesis
Ref Expression
sbiedv.1  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
sbiedv  |-  ( ph  ->  ( [ y  /  x ] ps  <->  ch )
)
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ph( y)    ps( x, y)    ch( y)

Proof of Theorem sbiedv
StepHypRef Expression
1 nfv 1551 . 2  |-  F/ x ph
2 nfvd 1552 . 2  |-  ( ph  ->  F/ x ch )
3 sbiedv.1 . . 3  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
43ex 115 . 2  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
51, 2, 4sbied 1811 1  |-  ( ph  ->  ( [ y  /  x ] ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  acexmid  5945
  Copyright terms: Public domain W3C validator