| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbied | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1813). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbied.1 | ⊢ Ⅎ𝑥𝜑 |
| sbied.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| sbied.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| sbied | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbied.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1541 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | sbied.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 3 | nfrd 1542 | . 2 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| 5 | sbied.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | 2, 4, 5 | sbiedh 1809 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1482 [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-i9 1552 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 |
| This theorem is referenced by: sbiedv 1811 dvelimdf 2043 cbvrald 15657 |
| Copyright terms: Public domain | W3C validator |