![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbied | GIF version |
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1791). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbied.1 | ⊢ Ⅎ𝑥𝜑 |
sbied.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
sbied.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
sbied | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbied.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1519 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | sbied.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
4 | 3 | nfrd 1520 | . 2 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
5 | sbied.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
6 | 2, 4, 5 | sbiedh 1787 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1460 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 |
This theorem is referenced by: sbiedv 1789 dvelimdf 2016 cbvrald 14543 |
Copyright terms: Public domain | W3C validator |