Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbied | GIF version |
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1771). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbied.1 | ⊢ Ⅎ𝑥𝜑 |
sbied.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
sbied.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
sbied | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbied.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1499 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | sbied.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
4 | 3 | nfrd 1500 | . 2 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
5 | sbied.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
6 | 2, 4, 5 | sbiedh 1767 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1440 [wsb 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-i9 1510 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 |
This theorem is referenced by: sbiedv 1769 dvelimdf 1996 cbvrald 13321 |
Copyright terms: Public domain | W3C validator |