ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpr1l Unicode version

Theorem simpr1l 1038
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpr1l  |-  ( ( ta  /\  ( (
ph  /\  ps )  /\  ch  /\  th )
)  ->  ph )

Proof of Theorem simpr1l
StepHypRef Expression
1 simp1l 1005 . 2  |-  ( ( ( ph  /\  ps )  /\  ch  /\  th )  ->  ph )
21adantl 275 1  |-  ( ( ta  /\  ( (
ph  /\  ps )  /\  ch  /\  th )
)  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 964
This theorem is referenced by:  prcdnql  7304  prnmaxl  7308  neitx  12451
  Copyright terms: Public domain W3C validator