| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prnmaxl | Unicode version | ||
| Description: A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| prnmaxl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnql 7594 |
. . . . 5
| |
| 2 | elinp 7587 |
. . . . . . . 8
| |
| 3 | simpr1l 1057 |
. . . . . . . 8
| |
| 4 | 2, 3 | sylbi 121 |
. . . . . . 7
|
| 5 | eleq1 2268 |
. . . . . . . . 9
| |
| 6 | breq1 4047 |
. . . . . . . . . . 11
| |
| 7 | 6 | anbi1d 465 |
. . . . . . . . . 10
|
| 8 | 7 | rexbidv 2507 |
. . . . . . . . 9
|
| 9 | 5, 8 | bibi12d 235 |
. . . . . . . 8
|
| 10 | 9 | rspcv 2873 |
. . . . . . 7
|
| 11 | biimp 118 |
. . . . . . 7
| |
| 12 | 4, 10, 11 | syl56 34 |
. . . . . 6
|
| 13 | 12 | impd 254 |
. . . . 5
|
| 14 | 1, 13 | mpcom 36 |
. . . 4
|
| 15 | df-rex 2490 |
. . . 4
| |
| 16 | 14, 15 | sylib 122 |
. . 3
|
| 17 | ltrelnq 7478 |
. . . . . . . . 9
| |
| 18 | 17 | brel 4727 |
. . . . . . . 8
|
| 19 | 18 | simprd 114 |
. . . . . . 7
|
| 20 | 19 | pm4.71ri 392 |
. . . . . 6
|
| 21 | 20 | anbi1i 458 |
. . . . 5
|
| 22 | ancom 266 |
. . . . 5
| |
| 23 | anass 401 |
. . . . 5
| |
| 24 | 21, 22, 23 | 3bitr3i 210 |
. . . 4
|
| 25 | 24 | exbii 1628 |
. . 3
|
| 26 | 16, 25 | sylibr 134 |
. 2
|
| 27 | df-rex 2490 |
. 2
| |
| 28 | 26, 27 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-qs 6626 df-ni 7417 df-nqqs 7461 df-ltnqqs 7466 df-inp 7579 |
| This theorem is referenced by: prnmaddl 7603 genprndl 7634 nqprl 7664 1idprl 7703 ltsopr 7709 ltexprlemm 7713 ltexprlemopl 7714 recexprlemloc 7744 recexprlem1ssl 7746 aptiprleml 7752 caucvgprprlemopl 7810 suplocexprlemrl 7830 |
| Copyright terms: Public domain | W3C validator |