ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnmaxl Unicode version

Theorem prnmaxl 7489
Description: A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.)
Assertion
Ref Expression
prnmaxl  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  E. x  e.  L  B  <Q  x )
Distinct variable groups:    x, B    x, L    x, U

Proof of Theorem prnmaxl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elprnql 7482 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  B  e.  Q. )
2 elinp 7475 . . . . . . . 8  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. y  e.  Q.  y  e.  L  /\  E. x  e.  Q.  x  e.  U ) )  /\  ( ( A. y  e.  Q.  ( y  e.  L  <->  E. x  e.  Q.  ( y  <Q  x  /\  x  e.  L
) )  /\  A. x  e.  Q.  (
x  e.  U  <->  E. y  e.  Q.  ( y  <Q  x  /\  y  e.  U
) ) )  /\  A. y  e.  Q.  -.  ( y  e.  L  /\  y  e.  U
)  /\  A. y  e.  Q.  A. x  e. 
Q.  ( y  <Q  x  ->  ( y  e.  L  \/  x  e.  U ) ) ) ) )
3 simpr1l 1054 . . . . . . . 8  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. y  e.  Q.  y  e.  L  /\  E. x  e.  Q.  x  e.  U )
)  /\  ( ( A. y  e.  Q.  ( y  e.  L  <->  E. x  e.  Q.  (
y  <Q  x  /\  x  e.  L ) )  /\  A. x  e.  Q.  (
x  e.  U  <->  E. y  e.  Q.  ( y  <Q  x  /\  y  e.  U
) ) )  /\  A. y  e.  Q.  -.  ( y  e.  L  /\  y  e.  U
)  /\  A. y  e.  Q.  A. x  e. 
Q.  ( y  <Q  x  ->  ( y  e.  L  \/  x  e.  U ) ) ) )  ->  A. y  e.  Q.  ( y  e.  L  <->  E. x  e.  Q.  ( y  <Q  x  /\  x  e.  L
) ) )
42, 3sylbi 121 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P.  ->  A. y  e.  Q.  ( y  e.  L  <->  E. x  e.  Q.  (
y  <Q  x  /\  x  e.  L ) ) )
5 eleq1 2240 . . . . . . . . 9  |-  ( y  =  B  ->  (
y  e.  L  <->  B  e.  L ) )
6 breq1 4008 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
y  <Q  x  <->  B  <Q  x ) )
76anbi1d 465 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( y  <Q  x  /\  x  e.  L
)  <->  ( B  <Q  x  /\  x  e.  L
) ) )
87rexbidv 2478 . . . . . . . . 9  |-  ( y  =  B  ->  ( E. x  e.  Q.  ( y  <Q  x  /\  x  e.  L
)  <->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L )
) )
95, 8bibi12d 235 . . . . . . . 8  |-  ( y  =  B  ->  (
( y  e.  L  <->  E. x  e.  Q.  (
y  <Q  x  /\  x  e.  L ) )  <->  ( B  e.  L  <->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L )
) ) )
109rspcv 2839 . . . . . . 7  |-  ( B  e.  Q.  ->  ( A. y  e.  Q.  ( y  e.  L  <->  E. x  e.  Q.  (
y  <Q  x  /\  x  e.  L ) )  -> 
( B  e.  L  <->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L ) ) ) )
11 biimp 118 . . . . . . 7  |-  ( ( B  e.  L  <->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L
) )  ->  ( B  e.  L  ->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L ) ) )
124, 10, 11syl56 34 . . . . . 6  |-  ( B  e.  Q.  ->  ( <. L ,  U >.  e. 
P.  ->  ( B  e.  L  ->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L
) ) ) )
1312impd 254 . . . . 5  |-  ( B  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  B  e.  L )  ->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L
) ) )
141, 13mpcom 36 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L
) )
15 df-rex 2461 . . . 4  |-  ( E. x  e.  Q.  ( B  <Q  x  /\  x  e.  L )  <->  E. x
( x  e.  Q.  /\  ( B  <Q  x  /\  x  e.  L
) ) )
1614, 15sylib 122 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  E. x
( x  e.  Q.  /\  ( B  <Q  x  /\  x  e.  L
) ) )
17 ltrelnq 7366 . . . . . . . . 9  |-  <Q  C_  ( Q.  X.  Q. )
1817brel 4680 . . . . . . . 8  |-  ( B 
<Q  x  ->  ( B  e.  Q.  /\  x  e.  Q. ) )
1918simprd 114 . . . . . . 7  |-  ( B 
<Q  x  ->  x  e. 
Q. )
2019pm4.71ri 392 . . . . . 6  |-  ( B 
<Q  x  <->  ( x  e. 
Q.  /\  B  <Q  x ) )
2120anbi1i 458 . . . . 5  |-  ( ( B  <Q  x  /\  x  e.  L )  <->  ( ( x  e.  Q.  /\  B  <Q  x )  /\  x  e.  L
) )
22 ancom 266 . . . . 5  |-  ( ( B  <Q  x  /\  x  e.  L )  <->  ( x  e.  L  /\  B  <Q  x ) )
23 anass 401 . . . . 5  |-  ( ( ( x  e.  Q.  /\  B  <Q  x )  /\  x  e.  L
)  <->  ( x  e. 
Q.  /\  ( B  <Q  x  /\  x  e.  L ) ) )
2421, 22, 233bitr3i 210 . . . 4  |-  ( ( x  e.  L  /\  B  <Q  x )  <->  ( x  e.  Q.  /\  ( B 
<Q  x  /\  x  e.  L ) ) )
2524exbii 1605 . . 3  |-  ( E. x ( x  e.  L  /\  B  <Q  x )  <->  E. x ( x  e.  Q.  /\  ( B  <Q  x  /\  x  e.  L ) ) )
2616, 25sylibr 134 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  E. x
( x  e.  L  /\  B  <Q  x ) )
27 df-rex 2461 . 2  |-  ( E. x  e.  L  B  <Q  x  <->  E. x ( x  e.  L  /\  B  <Q  x ) )
2826, 27sylibr 134 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  E. x  e.  L  B  <Q  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3131   <.cop 3597   class class class wbr 4005   Q.cnq 7281    <Q cltq 7286   P.cnp 7292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-qs 6543  df-ni 7305  df-nqqs 7349  df-ltnqqs 7354  df-inp 7467
This theorem is referenced by:  prnmaddl  7491  genprndl  7522  nqprl  7552  1idprl  7591  ltsopr  7597  ltexprlemm  7601  ltexprlemopl  7602  recexprlemloc  7632  recexprlem1ssl  7634  aptiprleml  7640  caucvgprprlemopl  7698  suplocexprlemrl  7718
  Copyright terms: Public domain W3C validator