| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prnmaxl | Unicode version | ||
| Description: A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| prnmaxl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnql 7629 |
. . . . 5
| |
| 2 | elinp 7622 |
. . . . . . . 8
| |
| 3 | simpr1l 1057 |
. . . . . . . 8
| |
| 4 | 2, 3 | sylbi 121 |
. . . . . . 7
|
| 5 | eleq1 2270 |
. . . . . . . . 9
| |
| 6 | breq1 4062 |
. . . . . . . . . . 11
| |
| 7 | 6 | anbi1d 465 |
. . . . . . . . . 10
|
| 8 | 7 | rexbidv 2509 |
. . . . . . . . 9
|
| 9 | 5, 8 | bibi12d 235 |
. . . . . . . 8
|
| 10 | 9 | rspcv 2880 |
. . . . . . 7
|
| 11 | biimp 118 |
. . . . . . 7
| |
| 12 | 4, 10, 11 | syl56 34 |
. . . . . 6
|
| 13 | 12 | impd 254 |
. . . . 5
|
| 14 | 1, 13 | mpcom 36 |
. . . 4
|
| 15 | df-rex 2492 |
. . . 4
| |
| 16 | 14, 15 | sylib 122 |
. . 3
|
| 17 | ltrelnq 7513 |
. . . . . . . . 9
| |
| 18 | 17 | brel 4745 |
. . . . . . . 8
|
| 19 | 18 | simprd 114 |
. . . . . . 7
|
| 20 | 19 | pm4.71ri 392 |
. . . . . 6
|
| 21 | 20 | anbi1i 458 |
. . . . 5
|
| 22 | ancom 266 |
. . . . 5
| |
| 23 | anass 401 |
. . . . 5
| |
| 24 | 21, 22, 23 | 3bitr3i 210 |
. . . 4
|
| 25 | 24 | exbii 1629 |
. . 3
|
| 26 | 16, 25 | sylibr 134 |
. 2
|
| 27 | df-rex 2492 |
. 2
| |
| 28 | 26, 27 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-qs 6649 df-ni 7452 df-nqqs 7496 df-ltnqqs 7501 df-inp 7614 |
| This theorem is referenced by: prnmaddl 7638 genprndl 7669 nqprl 7699 1idprl 7738 ltsopr 7744 ltexprlemm 7748 ltexprlemopl 7749 recexprlemloc 7779 recexprlem1ssl 7781 aptiprleml 7787 caucvgprprlemopl 7845 suplocexprlemrl 7865 |
| Copyright terms: Public domain | W3C validator |