| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant1 1020 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl1l 1050 simpr1l 1056 simp11l 1110 simp21l 1116 simp31l 1122 en2lp 4601 tfisi 4634 funprg 5323 nnsucsssuc 6577 ecopovtrn 6718 ecopovtrng 6721 addassnqg 7494 distrnqg 7499 ltsonq 7510 ltanqg 7512 ltmnqg 7513 distrnq0 7571 addassnq0 7574 mulasssrg 7870 distrsrg 7871 lttrsr 7874 ltsosr 7876 ltasrg 7882 mulextsr1lem 7892 mulextsr1 7893 axmulass 7985 axdistr 7986 dmdcanap 8794 lt2msq1 8957 ltdiv2 8959 lediv2 8963 xaddass 9990 xaddass2 9991 xlt2add 10001 modqdi 10535 expaddzaplem 10725 expaddzap 10726 expmulzap 10728 resqrtcl 11311 bdtrilem 11521 bdtri 11522 xrbdtri 11558 bitsfzo 12237 prmexpb 12444 4sqlem18 12702 subgabl 13639 opprringbg 13813 cnptoprest 14682 ssblps 14868 ssbl 14869 plyadd 15194 plymul 15195 rplogbchbase 15393 rplogbreexp 15396 relogbcxpbap 15408 lgssq 15488 |
| Copyright terms: Public domain | W3C validator |