| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant1 1021 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl1l 1051 simpr1l 1057 simp11l 1111 simp21l 1117 simp31l 1123 en2lp 4602 tfisi 4635 funprg 5324 nnsucsssuc 6578 ecopovtrn 6719 ecopovtrng 6722 addassnqg 7495 distrnqg 7500 ltsonq 7511 ltanqg 7513 ltmnqg 7514 distrnq0 7572 addassnq0 7575 mulasssrg 7871 distrsrg 7872 lttrsr 7875 ltsosr 7877 ltasrg 7883 mulextsr1lem 7893 mulextsr1 7894 axmulass 7986 axdistr 7987 dmdcanap 8795 lt2msq1 8958 ltdiv2 8960 lediv2 8964 xaddass 9991 xaddass2 9992 xlt2add 10002 modqdi 10537 expaddzaplem 10727 expaddzap 10728 expmulzap 10730 swrdspsleq 11120 resqrtcl 11340 bdtrilem 11550 bdtri 11551 xrbdtri 11587 bitsfzo 12266 prmexpb 12473 4sqlem18 12731 subgabl 13668 opprringbg 13842 cnptoprest 14711 ssblps 14897 ssbl 14898 plyadd 15223 plymul 15224 rplogbchbase 15422 rplogbreexp 15425 relogbcxpbap 15437 lgssq 15517 |
| Copyright terms: Public domain | W3C validator |