| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant1 1042 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl1l 1072 simpr1l 1078 simp11l 1132 simp21l 1138 simp31l 1144 en2lp 4645 tfisi 4678 funprg 5370 nnsucsssuc 6636 ecopovtrn 6777 ecopovtrng 6780 addassnqg 7565 distrnqg 7570 ltsonq 7581 ltanqg 7583 ltmnqg 7584 distrnq0 7642 addassnq0 7645 mulasssrg 7941 distrsrg 7942 lttrsr 7945 ltsosr 7947 ltasrg 7953 mulextsr1lem 7963 mulextsr1 7964 axmulass 8056 axdistr 8057 dmdcanap 8865 lt2msq1 9028 ltdiv2 9030 lediv2 9034 xaddass 10061 xaddass2 10062 xlt2add 10072 modqdi 10609 expaddzaplem 10799 expaddzap 10800 expmulzap 10802 swrdspsleq 11194 pfxeq 11223 ccatopth2 11244 pfxccat3 11261 resqrtcl 11535 bdtrilem 11745 bdtri 11746 xrbdtri 11782 bitsfzo 12461 prmexpb 12668 4sqlem18 12926 subgabl 13864 opprringbg 14038 cnptoprest 14907 ssblps 15093 ssbl 15094 plyadd 15419 plymul 15420 rplogbchbase 15618 rplogbreexp 15621 relogbcxpbap 15633 lgssq 15713 uhgr2edg 15998 |
| Copyright terms: Public domain | W3C validator |