| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant1 1020 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl1l 1050 simpr1l 1056 simp11l 1110 simp21l 1116 simp31l 1122 en2lp 4591 tfisi 4624 funprg 5309 nnsucsssuc 6559 ecopovtrn 6700 ecopovtrng 6703 addassnqg 7466 distrnqg 7471 ltsonq 7482 ltanqg 7484 ltmnqg 7485 distrnq0 7543 addassnq0 7546 mulasssrg 7842 distrsrg 7843 lttrsr 7846 ltsosr 7848 ltasrg 7854 mulextsr1lem 7864 mulextsr1 7865 axmulass 7957 axdistr 7958 dmdcanap 8766 lt2msq1 8929 ltdiv2 8931 lediv2 8935 xaddass 9961 xaddass2 9962 xlt2add 9972 modqdi 10501 expaddzaplem 10691 expaddzap 10692 expmulzap 10694 resqrtcl 11211 bdtrilem 11421 bdtri 11422 xrbdtri 11458 bitsfzo 12137 prmexpb 12344 4sqlem18 12602 subgabl 13538 opprringbg 13712 cnptoprest 14559 ssblps 14745 ssbl 14746 plyadd 15071 plymul 15072 rplogbchbase 15270 rplogbreexp 15273 relogbcxpbap 15285 lgssq 15365 |
| Copyright terms: Public domain | W3C validator |