ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcdnql Unicode version

Theorem prcdnql 7474
Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prcdnql  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) )

Proof of Theorem prcdnql
Dummy variables  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7355 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4675 . . . . 5  |-  ( C 
<Q  B  ->  ( C  e.  Q.  /\  B  e.  Q. ) )
32simpld 112 . . . 4  |-  ( C 
<Q  B  ->  C  e. 
Q. )
43adantl 277 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  Q. )
5 breq1 4003 . . . . . . 7  |-  ( c  =  C  ->  (
c  <Q  B  <->  C  <Q  B ) )
6 eleq1 2240 . . . . . . 7  |-  ( c  =  C  ->  (
c  e.  L  <->  C  e.  L ) )
75, 6imbi12d 234 . . . . . 6  |-  ( c  =  C  ->  (
( c  <Q  B  -> 
c  e.  L )  <-> 
( C  <Q  B  ->  C  e.  L )
) )
87imbi2d 230 . . . . 5  |-  ( c  =  C  ->  (
( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  ->  ( c  <Q  B  -> 
c  e.  L ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) ) ) )
91brel 4675 . . . . . . . . 9  |-  ( c 
<Q  B  ->  ( c  e.  Q.  /\  B  e.  Q. ) )
109ancomd 267 . . . . . . . 8  |-  ( c 
<Q  B  ->  ( B  e.  Q.  /\  c  e.  Q. ) )
11 an42 587 . . . . . . . . 9  |-  ( ( ( B  e.  Q.  /\  c  e.  Q. )  /\  ( B  e.  L  /\  <. L ,  U >.  e.  P. ) )  <-> 
( ( B  e. 
Q.  /\  B  e.  L )  /\  ( <. L ,  U >.  e. 
P.  /\  c  e.  Q. ) ) )
12 breq2 4004 . . . . . . . . . . . . . . . 16  |-  ( b  =  B  ->  (
c  <Q  b  <->  c  <Q  B ) )
13 eleq1 2240 . . . . . . . . . . . . . . . 16  |-  ( b  =  B  ->  (
b  e.  L  <->  B  e.  L ) )
1412, 13anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( b  =  B  ->  (
( c  <Q  b  /\  b  e.  L
)  <->  ( c  <Q  B  /\  B  e.  L
) ) )
1514rspcev 2841 . . . . . . . . . . . . . 14  |-  ( ( B  e.  Q.  /\  ( c  <Q  B  /\  B  e.  L )
)  ->  E. b  e.  Q.  ( c  <Q 
b  /\  b  e.  L ) )
16 elinp 7464 . . . . . . . . . . . . . . . 16  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U ) )  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) ) )
17 simpr1l 1054 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U )
)  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) )  ->  A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) ) )
1816, 17sylbi 121 . . . . . . . . . . . . . . 15  |-  ( <. L ,  U >.  e. 
P.  ->  A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) ) )
1918r19.21bi 2565 . . . . . . . . . . . . . 14  |-  ( (
<. L ,  U >.  e. 
P.  /\  c  e.  Q. )  ->  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q 
b  /\  b  e.  L ) ) )
2015, 19syl5ibrcom 157 . . . . . . . . . . . . 13  |-  ( ( B  e.  Q.  /\  ( c  <Q  B  /\  B  e.  L )
)  ->  ( ( <. L ,  U >.  e. 
P.  /\  c  e.  Q. )  ->  c  e.  L ) )
21203impb 1199 . . . . . . . . . . . 12  |-  ( ( B  e.  Q.  /\  c  <Q  B  /\  B  e.  L )  ->  (
( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) )
22213com12 1207 . . . . . . . . . . 11  |-  ( ( c  <Q  B  /\  B  e.  Q.  /\  B  e.  L )  ->  (
( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) )
23223expib 1206 . . . . . . . . . 10  |-  ( c 
<Q  B  ->  ( ( B  e.  Q.  /\  B  e.  L )  ->  ( ( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) ) )
2423impd 254 . . . . . . . . 9  |-  ( c 
<Q  B  ->  ( ( ( B  e.  Q.  /\  B  e.  L )  /\  ( <. L ,  U >.  e.  P.  /\  c  e.  Q. )
)  ->  c  e.  L ) )
2511, 24biimtrid 152 . . . . . . . 8  |-  ( c 
<Q  B  ->  ( ( ( B  e.  Q.  /\  c  e.  Q. )  /\  ( B  e.  L  /\  <. L ,  U >.  e.  P. ) )  ->  c  e.  L
) )
2610, 25mpand 429 . . . . . . 7  |-  ( c 
<Q  B  ->  ( ( B  e.  L  /\  <. L ,  U >.  e. 
P. )  ->  c  e.  L ) )
2726com12 30 . . . . . 6  |-  ( ( B  e.  L  /\  <. L ,  U >.  e. 
P. )  ->  (
c  <Q  B  ->  c  e.  L ) )
2827ancoms 268 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  (
c  <Q  B  ->  c  e.  L ) )
298, 28vtoclg 2797 . . . 4  |-  ( C  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) ) )
3029impd 254 . . 3  |-  ( C  e.  Q.  ->  (
( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  L
) )
314, 30mpcom 36 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  L )
3231ex 115 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3129   <.cop 3594   class class class wbr 4000   Q.cnq 7270    <Q cltq 7275   P.cnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-qs 6535  df-ni 7294  df-nqqs 7338  df-ltnqqs 7343  df-inp 7456
This theorem is referenced by:  prubl  7476  addnqprllem  7517  nqprl  7541  mulnqprl  7558  distrlem4prl  7574  ltprordil  7579  1idprl  7580  ltpopr  7585  ltaddpr  7587  ltexprlemlol  7592  ltexprlemfl  7599  ltexprlemrl  7600  aptiprleml  7629  aptiprlemu  7630  archrecpr  7654  caucvgprprlemml  7684  suplocexprlemrl  7707  suplocexprlemloc  7711
  Copyright terms: Public domain W3C validator