| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcdnql | Unicode version | ||
| Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| prcdnql |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 7498 |
. . . . . 6
| |
| 2 | 1 | brel 4735 |
. . . . 5
|
| 3 | 2 | simpld 112 |
. . . 4
|
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | breq1 4054 |
. . . . . . 7
| |
| 6 | eleq1 2269 |
. . . . . . 7
| |
| 7 | 5, 6 | imbi12d 234 |
. . . . . 6
|
| 8 | 7 | imbi2d 230 |
. . . . 5
|
| 9 | 1 | brel 4735 |
. . . . . . . . 9
|
| 10 | 9 | ancomd 267 |
. . . . . . . 8
|
| 11 | an42 587 |
. . . . . . . . 9
| |
| 12 | breq2 4055 |
. . . . . . . . . . . . . . . 16
| |
| 13 | eleq1 2269 |
. . . . . . . . . . . . . . . 16
| |
| 14 | 12, 13 | anbi12d 473 |
. . . . . . . . . . . . . . 15
|
| 15 | 14 | rspcev 2881 |
. . . . . . . . . . . . . 14
|
| 16 | elinp 7607 |
. . . . . . . . . . . . . . . 16
| |
| 17 | simpr1l 1057 |
. . . . . . . . . . . . . . . 16
| |
| 18 | 16, 17 | sylbi 121 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | r19.21bi 2595 |
. . . . . . . . . . . . . 14
|
| 20 | 15, 19 | syl5ibrcom 157 |
. . . . . . . . . . . . 13
|
| 21 | 20 | 3impb 1202 |
. . . . . . . . . . . 12
|
| 22 | 21 | 3com12 1210 |
. . . . . . . . . . 11
|
| 23 | 22 | 3expib 1209 |
. . . . . . . . . 10
|
| 24 | 23 | impd 254 |
. . . . . . . . 9
|
| 25 | 11, 24 | biimtrid 152 |
. . . . . . . 8
|
| 26 | 10, 25 | mpand 429 |
. . . . . . 7
|
| 27 | 26 | com12 30 |
. . . . . 6
|
| 28 | 27 | ancoms 268 |
. . . . 5
|
| 29 | 8, 28 | vtoclg 2835 |
. . . 4
|
| 30 | 29 | impd 254 |
. . 3
|
| 31 | 4, 30 | mpcom 36 |
. 2
|
| 32 | 31 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-qs 6639 df-ni 7437 df-nqqs 7481 df-ltnqqs 7486 df-inp 7599 |
| This theorem is referenced by: prubl 7619 addnqprllem 7660 nqprl 7684 mulnqprl 7701 distrlem4prl 7717 ltprordil 7722 1idprl 7723 ltpopr 7728 ltaddpr 7730 ltexprlemlol 7735 ltexprlemfl 7742 ltexprlemrl 7743 aptiprleml 7772 aptiprlemu 7773 archrecpr 7797 caucvgprprlemml 7827 suplocexprlemrl 7850 suplocexprlemloc 7854 |
| Copyright terms: Public domain | W3C validator |