Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prcdnql | Unicode version |
Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
prcdnql |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7279 | . . . . . 6 | |
2 | 1 | brel 4637 | . . . . 5 |
3 | 2 | simpld 111 | . . . 4 |
4 | 3 | adantl 275 | . . 3 |
5 | breq1 3968 | . . . . . . 7 | |
6 | eleq1 2220 | . . . . . . 7 | |
7 | 5, 6 | imbi12d 233 | . . . . . 6 |
8 | 7 | imbi2d 229 | . . . . 5 |
9 | 1 | brel 4637 | . . . . . . . . 9 |
10 | 9 | ancomd 265 | . . . . . . . 8 |
11 | an42 577 | . . . . . . . . 9 | |
12 | breq2 3969 | . . . . . . . . . . . . . . . 16 | |
13 | eleq1 2220 | . . . . . . . . . . . . . . . 16 | |
14 | 12, 13 | anbi12d 465 | . . . . . . . . . . . . . . 15 |
15 | 14 | rspcev 2816 | . . . . . . . . . . . . . 14 |
16 | elinp 7388 | . . . . . . . . . . . . . . . 16 | |
17 | simpr1l 1039 | . . . . . . . . . . . . . . . 16 | |
18 | 16, 17 | sylbi 120 | . . . . . . . . . . . . . . 15 |
19 | 18 | r19.21bi 2545 | . . . . . . . . . . . . . 14 |
20 | 15, 19 | syl5ibrcom 156 | . . . . . . . . . . . . 13 |
21 | 20 | 3impb 1181 | . . . . . . . . . . . 12 |
22 | 21 | 3com12 1189 | . . . . . . . . . . 11 |
23 | 22 | 3expib 1188 | . . . . . . . . . 10 |
24 | 23 | impd 252 | . . . . . . . . 9 |
25 | 11, 24 | syl5bi 151 | . . . . . . . 8 |
26 | 10, 25 | mpand 426 | . . . . . . 7 |
27 | 26 | com12 30 | . . . . . 6 |
28 | 27 | ancoms 266 | . . . . 5 |
29 | 8, 28 | vtoclg 2772 | . . . 4 |
30 | 29 | impd 252 | . . 3 |
31 | 4, 30 | mpcom 36 | . 2 |
32 | 31 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 963 wceq 1335 wcel 2128 wral 2435 wrex 2436 wss 3102 cop 3563 class class class wbr 3965 cnq 7194 cltq 7199 cnp 7205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-qs 6483 df-ni 7218 df-nqqs 7262 df-ltnqqs 7267 df-inp 7380 |
This theorem is referenced by: prubl 7400 addnqprllem 7441 nqprl 7465 mulnqprl 7482 distrlem4prl 7498 ltprordil 7503 1idprl 7504 ltpopr 7509 ltaddpr 7511 ltexprlemlol 7516 ltexprlemfl 7523 ltexprlemrl 7524 aptiprleml 7553 aptiprlemu 7554 archrecpr 7578 caucvgprprlemml 7608 suplocexprlemrl 7631 suplocexprlemloc 7635 |
Copyright terms: Public domain | W3C validator |