ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcdnql Unicode version

Theorem prcdnql 7043
Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prcdnql  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) )

Proof of Theorem prcdnql
Dummy variables  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6924 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4490 . . . . 5  |-  ( C 
<Q  B  ->  ( C  e.  Q.  /\  B  e.  Q. ) )
32simpld 110 . . . 4  |-  ( C 
<Q  B  ->  C  e. 
Q. )
43adantl 271 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  Q. )
5 breq1 3848 . . . . . . 7  |-  ( c  =  C  ->  (
c  <Q  B  <->  C  <Q  B ) )
6 eleq1 2150 . . . . . . 7  |-  ( c  =  C  ->  (
c  e.  L  <->  C  e.  L ) )
75, 6imbi12d 232 . . . . . 6  |-  ( c  =  C  ->  (
( c  <Q  B  -> 
c  e.  L )  <-> 
( C  <Q  B  ->  C  e.  L )
) )
87imbi2d 228 . . . . 5  |-  ( c  =  C  ->  (
( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  ->  ( c  <Q  B  -> 
c  e.  L ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) ) ) )
91brel 4490 . . . . . . . . 9  |-  ( c 
<Q  B  ->  ( c  e.  Q.  /\  B  e.  Q. ) )
109ancomd 263 . . . . . . . 8  |-  ( c 
<Q  B  ->  ( B  e.  Q.  /\  c  e.  Q. ) )
11 an42 554 . . . . . . . . 9  |-  ( ( ( B  e.  Q.  /\  c  e.  Q. )  /\  ( B  e.  L  /\  <. L ,  U >.  e.  P. ) )  <-> 
( ( B  e. 
Q.  /\  B  e.  L )  /\  ( <. L ,  U >.  e. 
P.  /\  c  e.  Q. ) ) )
12 breq2 3849 . . . . . . . . . . . . . . . 16  |-  ( b  =  B  ->  (
c  <Q  b  <->  c  <Q  B ) )
13 eleq1 2150 . . . . . . . . . . . . . . . 16  |-  ( b  =  B  ->  (
b  e.  L  <->  B  e.  L ) )
1412, 13anbi12d 457 . . . . . . . . . . . . . . 15  |-  ( b  =  B  ->  (
( c  <Q  b  /\  b  e.  L
)  <->  ( c  <Q  B  /\  B  e.  L
) ) )
1514rspcev 2722 . . . . . . . . . . . . . 14  |-  ( ( B  e.  Q.  /\  ( c  <Q  B  /\  B  e.  L )
)  ->  E. b  e.  Q.  ( c  <Q 
b  /\  b  e.  L ) )
16 elinp 7033 . . . . . . . . . . . . . . . 16  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U ) )  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) ) )
17 simpr1l 1000 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U )
)  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) )  ->  A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) ) )
1816, 17sylbi 119 . . . . . . . . . . . . . . 15  |-  ( <. L ,  U >.  e. 
P.  ->  A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) ) )
1918r19.21bi 2461 . . . . . . . . . . . . . 14  |-  ( (
<. L ,  U >.  e. 
P.  /\  c  e.  Q. )  ->  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q 
b  /\  b  e.  L ) ) )
2015, 19syl5ibrcom 155 . . . . . . . . . . . . 13  |-  ( ( B  e.  Q.  /\  ( c  <Q  B  /\  B  e.  L )
)  ->  ( ( <. L ,  U >.  e. 
P.  /\  c  e.  Q. )  ->  c  e.  L ) )
21203impb 1139 . . . . . . . . . . . 12  |-  ( ( B  e.  Q.  /\  c  <Q  B  /\  B  e.  L )  ->  (
( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) )
22213com12 1147 . . . . . . . . . . 11  |-  ( ( c  <Q  B  /\  B  e.  Q.  /\  B  e.  L )  ->  (
( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) )
23223expib 1146 . . . . . . . . . 10  |-  ( c 
<Q  B  ->  ( ( B  e.  Q.  /\  B  e.  L )  ->  ( ( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) ) )
2423impd 251 . . . . . . . . 9  |-  ( c 
<Q  B  ->  ( ( ( B  e.  Q.  /\  B  e.  L )  /\  ( <. L ,  U >.  e.  P.  /\  c  e.  Q. )
)  ->  c  e.  L ) )
2511, 24syl5bi 150 . . . . . . . 8  |-  ( c 
<Q  B  ->  ( ( ( B  e.  Q.  /\  c  e.  Q. )  /\  ( B  e.  L  /\  <. L ,  U >.  e.  P. ) )  ->  c  e.  L
) )
2610, 25mpand 420 . . . . . . 7  |-  ( c 
<Q  B  ->  ( ( B  e.  L  /\  <. L ,  U >.  e. 
P. )  ->  c  e.  L ) )
2726com12 30 . . . . . 6  |-  ( ( B  e.  L  /\  <. L ,  U >.  e. 
P. )  ->  (
c  <Q  B  ->  c  e.  L ) )
2827ancoms 264 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  (
c  <Q  B  ->  c  e.  L ) )
298, 28vtoclg 2679 . . . 4  |-  ( C  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) ) )
3029impd 251 . . 3  |-  ( C  e.  Q.  ->  (
( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  L
) )
314, 30mpcom 36 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  L )
3231ex 113 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359   E.wrex 2360    C_ wss 2999   <.cop 3449   class class class wbr 3845   Q.cnq 6839    <Q cltq 6844   P.cnp 6850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-qs 6298  df-ni 6863  df-nqqs 6907  df-ltnqqs 6912  df-inp 7025
This theorem is referenced by:  prubl  7045  addnqprllem  7086  nqprl  7110  mulnqprl  7127  distrlem4prl  7143  ltprordil  7148  1idprl  7149  ltpopr  7154  ltaddpr  7156  ltexprlemlol  7161  ltexprlemfl  7168  ltexprlemrl  7169  aptiprleml  7198  aptiprlemu  7199  archrecpr  7223  caucvgprprlemml  7253
  Copyright terms: Public domain W3C validator