Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prcdnql | Unicode version |
Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
prcdnql |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7306 | . . . . . 6 | |
2 | 1 | brel 4656 | . . . . 5 |
3 | 2 | simpld 111 | . . . 4 |
4 | 3 | adantl 275 | . . 3 |
5 | breq1 3985 | . . . . . . 7 | |
6 | eleq1 2229 | . . . . . . 7 | |
7 | 5, 6 | imbi12d 233 | . . . . . 6 |
8 | 7 | imbi2d 229 | . . . . 5 |
9 | 1 | brel 4656 | . . . . . . . . 9 |
10 | 9 | ancomd 265 | . . . . . . . 8 |
11 | an42 577 | . . . . . . . . 9 | |
12 | breq2 3986 | . . . . . . . . . . . . . . . 16 | |
13 | eleq1 2229 | . . . . . . . . . . . . . . . 16 | |
14 | 12, 13 | anbi12d 465 | . . . . . . . . . . . . . . 15 |
15 | 14 | rspcev 2830 | . . . . . . . . . . . . . 14 |
16 | elinp 7415 | . . . . . . . . . . . . . . . 16 | |
17 | simpr1l 1044 | . . . . . . . . . . . . . . . 16 | |
18 | 16, 17 | sylbi 120 | . . . . . . . . . . . . . . 15 |
19 | 18 | r19.21bi 2554 | . . . . . . . . . . . . . 14 |
20 | 15, 19 | syl5ibrcom 156 | . . . . . . . . . . . . 13 |
21 | 20 | 3impb 1189 | . . . . . . . . . . . 12 |
22 | 21 | 3com12 1197 | . . . . . . . . . . 11 |
23 | 22 | 3expib 1196 | . . . . . . . . . 10 |
24 | 23 | impd 252 | . . . . . . . . 9 |
25 | 11, 24 | syl5bi 151 | . . . . . . . 8 |
26 | 10, 25 | mpand 426 | . . . . . . 7 |
27 | 26 | com12 30 | . . . . . 6 |
28 | 27 | ancoms 266 | . . . . 5 |
29 | 8, 28 | vtoclg 2786 | . . . 4 |
30 | 29 | impd 252 | . . 3 |
31 | 4, 30 | mpcom 36 | . 2 |
32 | 31 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 cop 3579 class class class wbr 3982 cnq 7221 cltq 7226 cnp 7232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-qs 6507 df-ni 7245 df-nqqs 7289 df-ltnqqs 7294 df-inp 7407 |
This theorem is referenced by: prubl 7427 addnqprllem 7468 nqprl 7492 mulnqprl 7509 distrlem4prl 7525 ltprordil 7530 1idprl 7531 ltpopr 7536 ltaddpr 7538 ltexprlemlol 7543 ltexprlemfl 7550 ltexprlemrl 7551 aptiprleml 7580 aptiprlemu 7581 archrecpr 7605 caucvgprprlemml 7635 suplocexprlemrl 7658 suplocexprlemloc 7662 |
Copyright terms: Public domain | W3C validator |