ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcdnql Unicode version

Theorem prcdnql 7546
Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prcdnql  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) )

Proof of Theorem prcdnql
Dummy variables  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7427 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4712 . . . . 5  |-  ( C 
<Q  B  ->  ( C  e.  Q.  /\  B  e.  Q. ) )
32simpld 112 . . . 4  |-  ( C 
<Q  B  ->  C  e. 
Q. )
43adantl 277 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  Q. )
5 breq1 4033 . . . . . . 7  |-  ( c  =  C  ->  (
c  <Q  B  <->  C  <Q  B ) )
6 eleq1 2256 . . . . . . 7  |-  ( c  =  C  ->  (
c  e.  L  <->  C  e.  L ) )
75, 6imbi12d 234 . . . . . 6  |-  ( c  =  C  ->  (
( c  <Q  B  -> 
c  e.  L )  <-> 
( C  <Q  B  ->  C  e.  L )
) )
87imbi2d 230 . . . . 5  |-  ( c  =  C  ->  (
( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  ->  ( c  <Q  B  -> 
c  e.  L ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) ) ) )
91brel 4712 . . . . . . . . 9  |-  ( c 
<Q  B  ->  ( c  e.  Q.  /\  B  e.  Q. ) )
109ancomd 267 . . . . . . . 8  |-  ( c 
<Q  B  ->  ( B  e.  Q.  /\  c  e.  Q. ) )
11 an42 587 . . . . . . . . 9  |-  ( ( ( B  e.  Q.  /\  c  e.  Q. )  /\  ( B  e.  L  /\  <. L ,  U >.  e.  P. ) )  <-> 
( ( B  e. 
Q.  /\  B  e.  L )  /\  ( <. L ,  U >.  e. 
P.  /\  c  e.  Q. ) ) )
12 breq2 4034 . . . . . . . . . . . . . . . 16  |-  ( b  =  B  ->  (
c  <Q  b  <->  c  <Q  B ) )
13 eleq1 2256 . . . . . . . . . . . . . . . 16  |-  ( b  =  B  ->  (
b  e.  L  <->  B  e.  L ) )
1412, 13anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( b  =  B  ->  (
( c  <Q  b  /\  b  e.  L
)  <->  ( c  <Q  B  /\  B  e.  L
) ) )
1514rspcev 2865 . . . . . . . . . . . . . 14  |-  ( ( B  e.  Q.  /\  ( c  <Q  B  /\  B  e.  L )
)  ->  E. b  e.  Q.  ( c  <Q 
b  /\  b  e.  L ) )
16 elinp 7536 . . . . . . . . . . . . . . . 16  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U ) )  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) ) )
17 simpr1l 1056 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U )
)  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) )  ->  A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) ) )
1816, 17sylbi 121 . . . . . . . . . . . . . . 15  |-  ( <. L ,  U >.  e. 
P.  ->  A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) ) )
1918r19.21bi 2582 . . . . . . . . . . . . . 14  |-  ( (
<. L ,  U >.  e. 
P.  /\  c  e.  Q. )  ->  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q 
b  /\  b  e.  L ) ) )
2015, 19syl5ibrcom 157 . . . . . . . . . . . . 13  |-  ( ( B  e.  Q.  /\  ( c  <Q  B  /\  B  e.  L )
)  ->  ( ( <. L ,  U >.  e. 
P.  /\  c  e.  Q. )  ->  c  e.  L ) )
21203impb 1201 . . . . . . . . . . . 12  |-  ( ( B  e.  Q.  /\  c  <Q  B  /\  B  e.  L )  ->  (
( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) )
22213com12 1209 . . . . . . . . . . 11  |-  ( ( c  <Q  B  /\  B  e.  Q.  /\  B  e.  L )  ->  (
( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) )
23223expib 1208 . . . . . . . . . 10  |-  ( c 
<Q  B  ->  ( ( B  e.  Q.  /\  B  e.  L )  ->  ( ( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) ) )
2423impd 254 . . . . . . . . 9  |-  ( c 
<Q  B  ->  ( ( ( B  e.  Q.  /\  B  e.  L )  /\  ( <. L ,  U >.  e.  P.  /\  c  e.  Q. )
)  ->  c  e.  L ) )
2511, 24biimtrid 152 . . . . . . . 8  |-  ( c 
<Q  B  ->  ( ( ( B  e.  Q.  /\  c  e.  Q. )  /\  ( B  e.  L  /\  <. L ,  U >.  e.  P. ) )  ->  c  e.  L
) )
2610, 25mpand 429 . . . . . . 7  |-  ( c 
<Q  B  ->  ( ( B  e.  L  /\  <. L ,  U >.  e. 
P. )  ->  c  e.  L ) )
2726com12 30 . . . . . 6  |-  ( ( B  e.  L  /\  <. L ,  U >.  e. 
P. )  ->  (
c  <Q  B  ->  c  e.  L ) )
2827ancoms 268 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  (
c  <Q  B  ->  c  e.  L ) )
298, 28vtoclg 2821 . . . 4  |-  ( C  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) ) )
3029impd 254 . . 3  |-  ( C  e.  Q.  ->  (
( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  L
) )
314, 30mpcom 36 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  L )
3231ex 115 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3154   <.cop 3622   class class class wbr 4030   Q.cnq 7342    <Q cltq 7347   P.cnp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-qs 6595  df-ni 7366  df-nqqs 7410  df-ltnqqs 7415  df-inp 7528
This theorem is referenced by:  prubl  7548  addnqprllem  7589  nqprl  7613  mulnqprl  7630  distrlem4prl  7646  ltprordil  7651  1idprl  7652  ltpopr  7657  ltaddpr  7659  ltexprlemlol  7664  ltexprlemfl  7671  ltexprlemrl  7672  aptiprleml  7701  aptiprlemu  7702  archrecpr  7726  caucvgprprlemml  7756  suplocexprlemrl  7779  suplocexprlemloc  7783
  Copyright terms: Public domain W3C validator