| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcdnql | Unicode version | ||
| Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| prcdnql |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 7548 |
. . . . . 6
| |
| 2 | 1 | brel 4770 |
. . . . 5
|
| 3 | 2 | simpld 112 |
. . . 4
|
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | breq1 4085 |
. . . . . . 7
| |
| 6 | eleq1 2292 |
. . . . . . 7
| |
| 7 | 5, 6 | imbi12d 234 |
. . . . . 6
|
| 8 | 7 | imbi2d 230 |
. . . . 5
|
| 9 | 1 | brel 4770 |
. . . . . . . . 9
|
| 10 | 9 | ancomd 267 |
. . . . . . . 8
|
| 11 | an42 587 |
. . . . . . . . 9
| |
| 12 | breq2 4086 |
. . . . . . . . . . . . . . . 16
| |
| 13 | eleq1 2292 |
. . . . . . . . . . . . . . . 16
| |
| 14 | 12, 13 | anbi12d 473 |
. . . . . . . . . . . . . . 15
|
| 15 | 14 | rspcev 2907 |
. . . . . . . . . . . . . 14
|
| 16 | elinp 7657 |
. . . . . . . . . . . . . . . 16
| |
| 17 | simpr1l 1078 |
. . . . . . . . . . . . . . . 16
| |
| 18 | 16, 17 | sylbi 121 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | r19.21bi 2618 |
. . . . . . . . . . . . . 14
|
| 20 | 15, 19 | syl5ibrcom 157 |
. . . . . . . . . . . . 13
|
| 21 | 20 | 3impb 1223 |
. . . . . . . . . . . 12
|
| 22 | 21 | 3com12 1231 |
. . . . . . . . . . 11
|
| 23 | 22 | 3expib 1230 |
. . . . . . . . . 10
|
| 24 | 23 | impd 254 |
. . . . . . . . 9
|
| 25 | 11, 24 | biimtrid 152 |
. . . . . . . 8
|
| 26 | 10, 25 | mpand 429 |
. . . . . . 7
|
| 27 | 26 | com12 30 |
. . . . . 6
|
| 28 | 27 | ancoms 268 |
. . . . 5
|
| 29 | 8, 28 | vtoclg 2861 |
. . . 4
|
| 30 | 29 | impd 254 |
. . 3
|
| 31 | 4, 30 | mpcom 36 |
. 2
|
| 32 | 31 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-qs 6684 df-ni 7487 df-nqqs 7531 df-ltnqqs 7536 df-inp 7649 |
| This theorem is referenced by: prubl 7669 addnqprllem 7710 nqprl 7734 mulnqprl 7751 distrlem4prl 7767 ltprordil 7772 1idprl 7773 ltpopr 7778 ltaddpr 7780 ltexprlemlol 7785 ltexprlemfl 7792 ltexprlemrl 7793 aptiprleml 7822 aptiprlemu 7823 archrecpr 7847 caucvgprprlemml 7877 suplocexprlemrl 7900 suplocexprlemloc 7904 |
| Copyright terms: Public domain | W3C validator |