ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neitx Unicode version

Theorem neitx 14245
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypotheses
Ref Expression
neitx.x  |-  X  = 
U. J
neitx.y  |-  Y  = 
U. K
Assertion
Ref Expression
neitx  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) ) )

Proof of Theorem neitx
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neitx.x . . . . . 6  |-  X  = 
U. J
21neii1 14124 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  A  C_  X )
32ad2ant2r 509 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  A  C_  X )
4 neitx.y . . . . . 6  |-  Y  = 
U. K
54neii1 14124 . . . . 5  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  B  C_  Y )
65ad2ant2l 508 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  B  C_  Y )
7 xpss12 4751 . . . 4  |-  ( ( A  C_  X  /\  B  C_  Y )  -> 
( A  X.  B
)  C_  ( X  X.  Y ) )
83, 6, 7syl2anc 411 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  C_  ( X  X.  Y
) )
91, 4txuni 14240 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( X  X.  Y
)  =  U. ( J  tX  K ) )
109adantr 276 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( X  X.  Y )  = 
U. ( J  tX  K ) )
118, 10sseqtrd 3208 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  C_  U. ( J  tX  K
) )
12 simp-5l 543 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( J  e.  Top  /\  K  e. 
Top ) )
13 simp-4r 542 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  a  e.  J )
14 simplr 528 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  b  e.  K )
15 txopn 14242 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( a  e.  J  /\  b  e.  K
) )  ->  (
a  X.  b )  e.  ( J  tX  K ) )
1612, 13, 14, 15syl12anc 1247 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( a  X.  b )  e.  ( J  tX  K ) )
17 simpr1l 1056 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  (
( C  C_  a  /\  a  C_  A )  /\  b  e.  K  /\  ( D  C_  b  /\  b  C_  B ) ) )  ->  C  C_  a )
18173anassrs 1231 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  C  C_  a
)
19 simprl 529 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  D  C_  b
)
20 xpss12 4751 . . . . . 6  |-  ( ( C  C_  a  /\  D  C_  b )  -> 
( C  X.  D
)  C_  ( a  X.  b ) )
2118, 19, 20syl2anc 411 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( C  X.  D )  C_  (
a  X.  b ) )
22 simpr1r 1057 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  (
( C  C_  a  /\  a  C_  A )  /\  b  e.  K  /\  ( D  C_  b  /\  b  C_  B ) ) )  ->  a  C_  A )
23223anassrs 1231 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  a  C_  A )
24 simprr 531 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  b  C_  B )
25 xpss12 4751 . . . . . 6  |-  ( ( a  C_  A  /\  b  C_  B )  -> 
( a  X.  b
)  C_  ( A  X.  B ) )
2623, 24, 25syl2anc 411 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( a  X.  b )  C_  ( A  X.  B ) )
27 sseq2 3194 . . . . . . 7  |-  ( c  =  ( a  X.  b )  ->  (
( C  X.  D
)  C_  c  <->  ( C  X.  D )  C_  (
a  X.  b ) ) )
28 sseq1 3193 . . . . . . 7  |-  ( c  =  ( a  X.  b )  ->  (
c  C_  ( A  X.  B )  <->  ( a  X.  b )  C_  ( A  X.  B ) ) )
2927, 28anbi12d 473 . . . . . 6  |-  ( c  =  ( a  X.  b )  ->  (
( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) )  <-> 
( ( C  X.  D )  C_  (
a  X.  b )  /\  ( a  X.  b )  C_  ( A  X.  B ) ) ) )
3029rspcev 2856 . . . . 5  |-  ( ( ( a  X.  b
)  e.  ( J 
tX  K )  /\  ( ( C  X.  D )  C_  (
a  X.  b )  /\  ( a  X.  b )  C_  ( A  X.  B ) ) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
3116, 21, 26, 30syl12anc 1247 . . . 4  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
32 neii2 14126 . . . . . 6  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3332ad2ant2l 508 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3433ad2antrr 488 . . . 4  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3531, 34r19.29a 2633 . . 3  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  ->  E. c  e.  ( J  tX  K ) ( ( C  X.  D
)  C_  c  /\  c  C_  ( A  X.  B ) ) )
36 neii2 14126 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  E. a  e.  J  ( C  C_  a  /\  a  C_  A ) )
3736ad2ant2r 509 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. a  e.  J  ( C  C_  a  /\  a  C_  A ) )
3835, 37r19.29a 2633 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
39 txtop 14237 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  e.  Top )
4039adantr 276 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( J  tX  K )  e. 
Top )
411neiss2 14119 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  C  C_  X )
4241ad2ant2r 509 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  C  C_  X )
434neiss2 14119 . . . . . 6  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  D  C_  Y )
4443ad2ant2l 508 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  D  C_  Y )
45 xpss12 4751 . . . . 5  |-  ( ( C  C_  X  /\  D  C_  Y )  -> 
( C  X.  D
)  C_  ( X  X.  Y ) )
4642, 44, 45syl2anc 411 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( C  X.  D )  C_  ( X  X.  Y
) )
4746, 10sseqtrd 3208 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( C  X.  D )  C_  U. ( J  tX  K
) )
48 eqid 2189 . . . 4  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
4948isnei 14121 . . 3  |-  ( ( ( J  tX  K
)  e.  Top  /\  ( C  X.  D
)  C_  U. ( J  tX  K ) )  ->  ( ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) )  <->  ( ( A  X.  B )  C_  U. ( J  tX  K
)  /\  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) ) ) )
5040, 47, 49syl2anc 411 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  (
( A  X.  B
)  e.  ( ( nei `  ( J 
tX  K ) ) `
 ( C  X.  D ) )  <->  ( ( A  X.  B )  C_  U. ( J  tX  K
)  /\  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) ) ) )
5111, 38, 50mpbir2and 946 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   E.wrex 2469    C_ wss 3144   U.cuni 3824    X. cxp 4642   ` cfv 5235  (class class class)co 5897   Topctop 13974   neicnei 14115    tX ctx 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-topgen 12768  df-top 13975  df-topon 13988  df-bases 14020  df-nei 14116  df-tx 14230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator