ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neitx Unicode version

Theorem neitx 14504
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypotheses
Ref Expression
neitx.x  |-  X  = 
U. J
neitx.y  |-  Y  = 
U. K
Assertion
Ref Expression
neitx  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) ) )

Proof of Theorem neitx
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neitx.x . . . . . 6  |-  X  = 
U. J
21neii1 14383 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  A  C_  X )
32ad2ant2r 509 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  A  C_  X )
4 neitx.y . . . . . 6  |-  Y  = 
U. K
54neii1 14383 . . . . 5  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  B  C_  Y )
65ad2ant2l 508 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  B  C_  Y )
7 xpss12 4770 . . . 4  |-  ( ( A  C_  X  /\  B  C_  Y )  -> 
( A  X.  B
)  C_  ( X  X.  Y ) )
83, 6, 7syl2anc 411 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  C_  ( X  X.  Y
) )
91, 4txuni 14499 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( X  X.  Y
)  =  U. ( J  tX  K ) )
109adantr 276 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( X  X.  Y )  = 
U. ( J  tX  K ) )
118, 10sseqtrd 3221 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  C_  U. ( J  tX  K
) )
12 simp-5l 543 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( J  e.  Top  /\  K  e. 
Top ) )
13 simp-4r 542 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  a  e.  J )
14 simplr 528 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  b  e.  K )
15 txopn 14501 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( a  e.  J  /\  b  e.  K
) )  ->  (
a  X.  b )  e.  ( J  tX  K ) )
1612, 13, 14, 15syl12anc 1247 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( a  X.  b )  e.  ( J  tX  K ) )
17 simpr1l 1056 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  (
( C  C_  a  /\  a  C_  A )  /\  b  e.  K  /\  ( D  C_  b  /\  b  C_  B ) ) )  ->  C  C_  a )
18173anassrs 1231 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  C  C_  a
)
19 simprl 529 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  D  C_  b
)
20 xpss12 4770 . . . . . 6  |-  ( ( C  C_  a  /\  D  C_  b )  -> 
( C  X.  D
)  C_  ( a  X.  b ) )
2118, 19, 20syl2anc 411 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( C  X.  D )  C_  (
a  X.  b ) )
22 simpr1r 1057 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  (
( C  C_  a  /\  a  C_  A )  /\  b  e.  K  /\  ( D  C_  b  /\  b  C_  B ) ) )  ->  a  C_  A )
23223anassrs 1231 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  a  C_  A )
24 simprr 531 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  b  C_  B )
25 xpss12 4770 . . . . . 6  |-  ( ( a  C_  A  /\  b  C_  B )  -> 
( a  X.  b
)  C_  ( A  X.  B ) )
2623, 24, 25syl2anc 411 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( a  X.  b )  C_  ( A  X.  B ) )
27 sseq2 3207 . . . . . . 7  |-  ( c  =  ( a  X.  b )  ->  (
( C  X.  D
)  C_  c  <->  ( C  X.  D )  C_  (
a  X.  b ) ) )
28 sseq1 3206 . . . . . . 7  |-  ( c  =  ( a  X.  b )  ->  (
c  C_  ( A  X.  B )  <->  ( a  X.  b )  C_  ( A  X.  B ) ) )
2927, 28anbi12d 473 . . . . . 6  |-  ( c  =  ( a  X.  b )  ->  (
( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) )  <-> 
( ( C  X.  D )  C_  (
a  X.  b )  /\  ( a  X.  b )  C_  ( A  X.  B ) ) ) )
3029rspcev 2868 . . . . 5  |-  ( ( ( a  X.  b
)  e.  ( J 
tX  K )  /\  ( ( C  X.  D )  C_  (
a  X.  b )  /\  ( a  X.  b )  C_  ( A  X.  B ) ) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
3116, 21, 26, 30syl12anc 1247 . . . 4  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
32 neii2 14385 . . . . . 6  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3332ad2ant2l 508 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3433ad2antrr 488 . . . 4  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3531, 34r19.29a 2640 . . 3  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  ->  E. c  e.  ( J  tX  K ) ( ( C  X.  D
)  C_  c  /\  c  C_  ( A  X.  B ) ) )
36 neii2 14385 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  E. a  e.  J  ( C  C_  a  /\  a  C_  A ) )
3736ad2ant2r 509 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. a  e.  J  ( C  C_  a  /\  a  C_  A ) )
3835, 37r19.29a 2640 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
39 txtop 14496 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  e.  Top )
4039adantr 276 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( J  tX  K )  e. 
Top )
411neiss2 14378 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  C  C_  X )
4241ad2ant2r 509 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  C  C_  X )
434neiss2 14378 . . . . . 6  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  D  C_  Y )
4443ad2ant2l 508 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  D  C_  Y )
45 xpss12 4770 . . . . 5  |-  ( ( C  C_  X  /\  D  C_  Y )  -> 
( C  X.  D
)  C_  ( X  X.  Y ) )
4642, 44, 45syl2anc 411 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( C  X.  D )  C_  ( X  X.  Y
) )
4746, 10sseqtrd 3221 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( C  X.  D )  C_  U. ( J  tX  K
) )
48 eqid 2196 . . . 4  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
4948isnei 14380 . . 3  |-  ( ( ( J  tX  K
)  e.  Top  /\  ( C  X.  D
)  C_  U. ( J  tX  K ) )  ->  ( ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) )  <->  ( ( A  X.  B )  C_  U. ( J  tX  K
)  /\  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) ) ) )
5040, 47, 49syl2anc 411 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  (
( A  X.  B
)  e.  ( ( nei `  ( J 
tX  K ) ) `
 ( C  X.  D ) )  <->  ( ( A  X.  B )  C_  U. ( J  tX  K
)  /\  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) ) ) )
5111, 38, 50mpbir2and 946 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   U.cuni 3839    X. cxp 4661   ` cfv 5258  (class class class)co 5922   Topctop 14233   neicnei 14374    tX ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-nei 14375  df-tx 14489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator