Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neitx | Unicode version |
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
Ref | Expression |
---|---|
neitx.x | |
neitx.y |
Ref | Expression |
---|---|
neitx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neitx.x | . . . . . 6 | |
2 | 1 | neii1 12787 | . . . . 5 |
3 | 2 | ad2ant2r 501 | . . . 4 |
4 | neitx.y | . . . . . 6 | |
5 | 4 | neii1 12787 | . . . . 5 |
6 | 5 | ad2ant2l 500 | . . . 4 |
7 | xpss12 4711 | . . . 4 | |
8 | 3, 6, 7 | syl2anc 409 | . . 3 |
9 | 1, 4 | txuni 12903 | . . . 4 |
10 | 9 | adantr 274 | . . 3 |
11 | 8, 10 | sseqtrd 3180 | . 2 |
12 | simp-5l 533 | . . . . . 6 | |
13 | simp-4r 532 | . . . . . 6 | |
14 | simplr 520 | . . . . . 6 | |
15 | txopn 12905 | . . . . . 6 | |
16 | 12, 13, 14, 15 | syl12anc 1226 | . . . . 5 |
17 | simpr1l 1044 | . . . . . . 7 | |
18 | 17 | 3anassrs 1219 | . . . . . 6 |
19 | simprl 521 | . . . . . 6 | |
20 | xpss12 4711 | . . . . . 6 | |
21 | 18, 19, 20 | syl2anc 409 | . . . . 5 |
22 | simpr1r 1045 | . . . . . . 7 | |
23 | 22 | 3anassrs 1219 | . . . . . 6 |
24 | simprr 522 | . . . . . 6 | |
25 | xpss12 4711 | . . . . . 6 | |
26 | 23, 24, 25 | syl2anc 409 | . . . . 5 |
27 | sseq2 3166 | . . . . . . 7 | |
28 | sseq1 3165 | . . . . . . 7 | |
29 | 27, 28 | anbi12d 465 | . . . . . 6 |
30 | 29 | rspcev 2830 | . . . . 5 |
31 | 16, 21, 26, 30 | syl12anc 1226 | . . . 4 |
32 | neii2 12789 | . . . . . 6 | |
33 | 32 | ad2ant2l 500 | . . . . 5 |
34 | 33 | ad2antrr 480 | . . . 4 |
35 | 31, 34 | r19.29a 2609 | . . 3 |
36 | neii2 12789 | . . . 4 | |
37 | 36 | ad2ant2r 501 | . . 3 |
38 | 35, 37 | r19.29a 2609 | . 2 |
39 | txtop 12900 | . . . 4 | |
40 | 39 | adantr 274 | . . 3 |
41 | 1 | neiss2 12782 | . . . . . 6 |
42 | 41 | ad2ant2r 501 | . . . . 5 |
43 | 4 | neiss2 12782 | . . . . . 6 |
44 | 43 | ad2ant2l 500 | . . . . 5 |
45 | xpss12 4711 | . . . . 5 | |
46 | 42, 44, 45 | syl2anc 409 | . . . 4 |
47 | 46, 10 | sseqtrd 3180 | . . 3 |
48 | eqid 2165 | . . . 4 | |
49 | 48 | isnei 12784 | . . 3 |
50 | 40, 47, 49 | syl2anc 409 | . 2 |
51 | 11, 38, 50 | mpbir2and 934 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wrex 2445 wss 3116 cuni 3789 cxp 4602 cfv 5188 (class class class)co 5842 ctop 12635 cnei 12778 ctx 12892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 df-nei 12779 df-tx 12893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |