| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neitx | Unicode version | ||
| Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| neitx.x |
|
| neitx.y |
|
| Ref | Expression |
|---|---|
| neitx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neitx.x |
. . . . . 6
| |
| 2 | 1 | neii1 14806 |
. . . . 5
|
| 3 | 2 | ad2ant2r 509 |
. . . 4
|
| 4 | neitx.y |
. . . . . 6
| |
| 5 | 4 | neii1 14806 |
. . . . 5
|
| 6 | 5 | ad2ant2l 508 |
. . . 4
|
| 7 | xpss12 4823 |
. . . 4
| |
| 8 | 3, 6, 7 | syl2anc 411 |
. . 3
|
| 9 | 1, 4 | txuni 14922 |
. . . 4
|
| 10 | 9 | adantr 276 |
. . 3
|
| 11 | 8, 10 | sseqtrd 3262 |
. 2
|
| 12 | simp-5l 543 |
. . . . . 6
| |
| 13 | simp-4r 542 |
. . . . . 6
| |
| 14 | simplr 528 |
. . . . . 6
| |
| 15 | txopn 14924 |
. . . . . 6
| |
| 16 | 12, 13, 14, 15 | syl12anc 1269 |
. . . . 5
|
| 17 | simpr1l 1078 |
. . . . . . 7
| |
| 18 | 17 | 3anassrs 1253 |
. . . . . 6
|
| 19 | simprl 529 |
. . . . . 6
| |
| 20 | xpss12 4823 |
. . . . . 6
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . 5
|
| 22 | simpr1r 1079 |
. . . . . . 7
| |
| 23 | 22 | 3anassrs 1253 |
. . . . . 6
|
| 24 | simprr 531 |
. . . . . 6
| |
| 25 | xpss12 4823 |
. . . . . 6
| |
| 26 | 23, 24, 25 | syl2anc 411 |
. . . . 5
|
| 27 | sseq2 3248 |
. . . . . . 7
| |
| 28 | sseq1 3247 |
. . . . . . 7
| |
| 29 | 27, 28 | anbi12d 473 |
. . . . . 6
|
| 30 | 29 | rspcev 2907 |
. . . . 5
|
| 31 | 16, 21, 26, 30 | syl12anc 1269 |
. . . 4
|
| 32 | neii2 14808 |
. . . . . 6
| |
| 33 | 32 | ad2ant2l 508 |
. . . . 5
|
| 34 | 33 | ad2antrr 488 |
. . . 4
|
| 35 | 31, 34 | r19.29a 2674 |
. . 3
|
| 36 | neii2 14808 |
. . . 4
| |
| 37 | 36 | ad2ant2r 509 |
. . 3
|
| 38 | 35, 37 | r19.29a 2674 |
. 2
|
| 39 | txtop 14919 |
. . . 4
| |
| 40 | 39 | adantr 276 |
. . 3
|
| 41 | 1 | neiss2 14801 |
. . . . . 6
|
| 42 | 41 | ad2ant2r 509 |
. . . . 5
|
| 43 | 4 | neiss2 14801 |
. . . . . 6
|
| 44 | 43 | ad2ant2l 508 |
. . . . 5
|
| 45 | xpss12 4823 |
. . . . 5
| |
| 46 | 42, 44, 45 | syl2anc 411 |
. . . 4
|
| 47 | 46, 10 | sseqtrd 3262 |
. . 3
|
| 48 | eqid 2229 |
. . . 4
| |
| 49 | 48 | isnei 14803 |
. . 3
|
| 50 | 40, 47, 49 | syl2anc 411 |
. 2
|
| 51 | 11, 38, 50 | mpbir2and 950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-topgen 13279 df-top 14657 df-topon 14670 df-bases 14702 df-nei 14798 df-tx 14912 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |