| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neitx | Unicode version | ||
| Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| neitx.x |
|
| neitx.y |
|
| Ref | Expression |
|---|---|
| neitx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neitx.x |
. . . . . 6
| |
| 2 | 1 | neii1 14383 |
. . . . 5
|
| 3 | 2 | ad2ant2r 509 |
. . . 4
|
| 4 | neitx.y |
. . . . . 6
| |
| 5 | 4 | neii1 14383 |
. . . . 5
|
| 6 | 5 | ad2ant2l 508 |
. . . 4
|
| 7 | xpss12 4770 |
. . . 4
| |
| 8 | 3, 6, 7 | syl2anc 411 |
. . 3
|
| 9 | 1, 4 | txuni 14499 |
. . . 4
|
| 10 | 9 | adantr 276 |
. . 3
|
| 11 | 8, 10 | sseqtrd 3221 |
. 2
|
| 12 | simp-5l 543 |
. . . . . 6
| |
| 13 | simp-4r 542 |
. . . . . 6
| |
| 14 | simplr 528 |
. . . . . 6
| |
| 15 | txopn 14501 |
. . . . . 6
| |
| 16 | 12, 13, 14, 15 | syl12anc 1247 |
. . . . 5
|
| 17 | simpr1l 1056 |
. . . . . . 7
| |
| 18 | 17 | 3anassrs 1231 |
. . . . . 6
|
| 19 | simprl 529 |
. . . . . 6
| |
| 20 | xpss12 4770 |
. . . . . 6
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . 5
|
| 22 | simpr1r 1057 |
. . . . . . 7
| |
| 23 | 22 | 3anassrs 1231 |
. . . . . 6
|
| 24 | simprr 531 |
. . . . . 6
| |
| 25 | xpss12 4770 |
. . . . . 6
| |
| 26 | 23, 24, 25 | syl2anc 411 |
. . . . 5
|
| 27 | sseq2 3207 |
. . . . . . 7
| |
| 28 | sseq1 3206 |
. . . . . . 7
| |
| 29 | 27, 28 | anbi12d 473 |
. . . . . 6
|
| 30 | 29 | rspcev 2868 |
. . . . 5
|
| 31 | 16, 21, 26, 30 | syl12anc 1247 |
. . . 4
|
| 32 | neii2 14385 |
. . . . . 6
| |
| 33 | 32 | ad2ant2l 508 |
. . . . 5
|
| 34 | 33 | ad2antrr 488 |
. . . 4
|
| 35 | 31, 34 | r19.29a 2640 |
. . 3
|
| 36 | neii2 14385 |
. . . 4
| |
| 37 | 36 | ad2ant2r 509 |
. . 3
|
| 38 | 35, 37 | r19.29a 2640 |
. 2
|
| 39 | txtop 14496 |
. . . 4
| |
| 40 | 39 | adantr 276 |
. . 3
|
| 41 | 1 | neiss2 14378 |
. . . . . 6
|
| 42 | 41 | ad2ant2r 509 |
. . . . 5
|
| 43 | 4 | neiss2 14378 |
. . . . . 6
|
| 44 | 43 | ad2ant2l 508 |
. . . . 5
|
| 45 | xpss12 4770 |
. . . . 5
| |
| 46 | 42, 44, 45 | syl2anc 411 |
. . . 4
|
| 47 | 46, 10 | sseqtrd 3221 |
. . 3
|
| 48 | eqid 2196 |
. . . 4
| |
| 49 | 48 | isnei 14380 |
. . 3
|
| 50 | 40, 47, 49 | syl2anc 411 |
. 2
|
| 51 | 11, 38, 50 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-topgen 12931 df-top 14234 df-topon 14247 df-bases 14279 df-nei 14375 df-tx 14489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |