| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neitx | Unicode version | ||
| Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| neitx.x |
|
| neitx.y |
|
| Ref | Expression |
|---|---|
| neitx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neitx.x |
. . . . . 6
| |
| 2 | 1 | neii1 14669 |
. . . . 5
|
| 3 | 2 | ad2ant2r 509 |
. . . 4
|
| 4 | neitx.y |
. . . . . 6
| |
| 5 | 4 | neii1 14669 |
. . . . 5
|
| 6 | 5 | ad2ant2l 508 |
. . . 4
|
| 7 | xpss12 4787 |
. . . 4
| |
| 8 | 3, 6, 7 | syl2anc 411 |
. . 3
|
| 9 | 1, 4 | txuni 14785 |
. . . 4
|
| 10 | 9 | adantr 276 |
. . 3
|
| 11 | 8, 10 | sseqtrd 3233 |
. 2
|
| 12 | simp-5l 543 |
. . . . . 6
| |
| 13 | simp-4r 542 |
. . . . . 6
| |
| 14 | simplr 528 |
. . . . . 6
| |
| 15 | txopn 14787 |
. . . . . 6
| |
| 16 | 12, 13, 14, 15 | syl12anc 1248 |
. . . . 5
|
| 17 | simpr1l 1057 |
. . . . . . 7
| |
| 18 | 17 | 3anassrs 1232 |
. . . . . 6
|
| 19 | simprl 529 |
. . . . . 6
| |
| 20 | xpss12 4787 |
. . . . . 6
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . 5
|
| 22 | simpr1r 1058 |
. . . . . . 7
| |
| 23 | 22 | 3anassrs 1232 |
. . . . . 6
|
| 24 | simprr 531 |
. . . . . 6
| |
| 25 | xpss12 4787 |
. . . . . 6
| |
| 26 | 23, 24, 25 | syl2anc 411 |
. . . . 5
|
| 27 | sseq2 3219 |
. . . . . . 7
| |
| 28 | sseq1 3218 |
. . . . . . 7
| |
| 29 | 27, 28 | anbi12d 473 |
. . . . . 6
|
| 30 | 29 | rspcev 2879 |
. . . . 5
|
| 31 | 16, 21, 26, 30 | syl12anc 1248 |
. . . 4
|
| 32 | neii2 14671 |
. . . . . 6
| |
| 33 | 32 | ad2ant2l 508 |
. . . . 5
|
| 34 | 33 | ad2antrr 488 |
. . . 4
|
| 35 | 31, 34 | r19.29a 2650 |
. . 3
|
| 36 | neii2 14671 |
. . . 4
| |
| 37 | 36 | ad2ant2r 509 |
. . 3
|
| 38 | 35, 37 | r19.29a 2650 |
. 2
|
| 39 | txtop 14782 |
. . . 4
| |
| 40 | 39 | adantr 276 |
. . 3
|
| 41 | 1 | neiss2 14664 |
. . . . . 6
|
| 42 | 41 | ad2ant2r 509 |
. . . . 5
|
| 43 | 4 | neiss2 14664 |
. . . . . 6
|
| 44 | 43 | ad2ant2l 508 |
. . . . 5
|
| 45 | xpss12 4787 |
. . . . 5
| |
| 46 | 42, 44, 45 | syl2anc 411 |
. . . 4
|
| 47 | 46, 10 | sseqtrd 3233 |
. . 3
|
| 48 | eqid 2206 |
. . . 4
| |
| 49 | 48 | isnei 14666 |
. . 3
|
| 50 | 40, 47, 49 | syl2anc 411 |
. 2
|
| 51 | 11, 38, 50 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-topgen 13142 df-top 14520 df-topon 14533 df-bases 14565 df-nei 14661 df-tx 14775 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |