ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neitx Unicode version

Theorem neitx 13062
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypotheses
Ref Expression
neitx.x  |-  X  = 
U. J
neitx.y  |-  Y  = 
U. K
Assertion
Ref Expression
neitx  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) ) )

Proof of Theorem neitx
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neitx.x . . . . . 6  |-  X  = 
U. J
21neii1 12941 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  A  C_  X )
32ad2ant2r 506 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  A  C_  X )
4 neitx.y . . . . . 6  |-  Y  = 
U. K
54neii1 12941 . . . . 5  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  B  C_  Y )
65ad2ant2l 505 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  B  C_  Y )
7 xpss12 4718 . . . 4  |-  ( ( A  C_  X  /\  B  C_  Y )  -> 
( A  X.  B
)  C_  ( X  X.  Y ) )
83, 6, 7syl2anc 409 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  C_  ( X  X.  Y
) )
91, 4txuni 13057 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( X  X.  Y
)  =  U. ( J  tX  K ) )
109adantr 274 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( X  X.  Y )  = 
U. ( J  tX  K ) )
118, 10sseqtrd 3185 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  C_  U. ( J  tX  K
) )
12 simp-5l 538 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( J  e.  Top  /\  K  e. 
Top ) )
13 simp-4r 537 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  a  e.  J )
14 simplr 525 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  b  e.  K )
15 txopn 13059 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( a  e.  J  /\  b  e.  K
) )  ->  (
a  X.  b )  e.  ( J  tX  K ) )
1612, 13, 14, 15syl12anc 1231 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( a  X.  b )  e.  ( J  tX  K ) )
17 simpr1l 1049 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  (
( C  C_  a  /\  a  C_  A )  /\  b  e.  K  /\  ( D  C_  b  /\  b  C_  B ) ) )  ->  C  C_  a )
18173anassrs 1224 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  C  C_  a
)
19 simprl 526 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  D  C_  b
)
20 xpss12 4718 . . . . . 6  |-  ( ( C  C_  a  /\  D  C_  b )  -> 
( C  X.  D
)  C_  ( a  X.  b ) )
2118, 19, 20syl2anc 409 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( C  X.  D )  C_  (
a  X.  b ) )
22 simpr1r 1050 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  (
( C  C_  a  /\  a  C_  A )  /\  b  e.  K  /\  ( D  C_  b  /\  b  C_  B ) ) )  ->  a  C_  A )
23223anassrs 1224 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  a  C_  A )
24 simprr 527 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  b  C_  B )
25 xpss12 4718 . . . . . 6  |-  ( ( a  C_  A  /\  b  C_  B )  -> 
( a  X.  b
)  C_  ( A  X.  B ) )
2623, 24, 25syl2anc 409 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( a  X.  b )  C_  ( A  X.  B ) )
27 sseq2 3171 . . . . . . 7  |-  ( c  =  ( a  X.  b )  ->  (
( C  X.  D
)  C_  c  <->  ( C  X.  D )  C_  (
a  X.  b ) ) )
28 sseq1 3170 . . . . . . 7  |-  ( c  =  ( a  X.  b )  ->  (
c  C_  ( A  X.  B )  <->  ( a  X.  b )  C_  ( A  X.  B ) ) )
2927, 28anbi12d 470 . . . . . 6  |-  ( c  =  ( a  X.  b )  ->  (
( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) )  <-> 
( ( C  X.  D )  C_  (
a  X.  b )  /\  ( a  X.  b )  C_  ( A  X.  B ) ) ) )
3029rspcev 2834 . . . . 5  |-  ( ( ( a  X.  b
)  e.  ( J 
tX  K )  /\  ( ( C  X.  D )  C_  (
a  X.  b )  /\  ( a  X.  b )  C_  ( A  X.  B ) ) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
3116, 21, 26, 30syl12anc 1231 . . . 4  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
32 neii2 12943 . . . . . 6  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3332ad2ant2l 505 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3433ad2antrr 485 . . . 4  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3531, 34r19.29a 2613 . . 3  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  ->  E. c  e.  ( J  tX  K ) ( ( C  X.  D
)  C_  c  /\  c  C_  ( A  X.  B ) ) )
36 neii2 12943 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  E. a  e.  J  ( C  C_  a  /\  a  C_  A ) )
3736ad2ant2r 506 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. a  e.  J  ( C  C_  a  /\  a  C_  A ) )
3835, 37r19.29a 2613 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
39 txtop 13054 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  e.  Top )
4039adantr 274 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( J  tX  K )  e. 
Top )
411neiss2 12936 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  C  C_  X )
4241ad2ant2r 506 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  C  C_  X )
434neiss2 12936 . . . . . 6  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  D  C_  Y )
4443ad2ant2l 505 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  D  C_  Y )
45 xpss12 4718 . . . . 5  |-  ( ( C  C_  X  /\  D  C_  Y )  -> 
( C  X.  D
)  C_  ( X  X.  Y ) )
4642, 44, 45syl2anc 409 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( C  X.  D )  C_  ( X  X.  Y
) )
4746, 10sseqtrd 3185 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( C  X.  D )  C_  U. ( J  tX  K
) )
48 eqid 2170 . . . 4  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
4948isnei 12938 . . 3  |-  ( ( ( J  tX  K
)  e.  Top  /\  ( C  X.  D
)  C_  U. ( J  tX  K ) )  ->  ( ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) )  <->  ( ( A  X.  B )  C_  U. ( J  tX  K
)  /\  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) ) ) )
5040, 47, 49syl2anc 409 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  (
( A  X.  B
)  e.  ( ( nei `  ( J 
tX  K ) ) `
 ( C  X.  D ) )  <->  ( ( A  X.  B )  C_  U. ( J  tX  K
)  /\  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) ) ) )
5111, 38, 50mpbir2and 939 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449    C_ wss 3121   U.cuni 3796    X. cxp 4609   ` cfv 5198  (class class class)co 5853   Topctop 12789   neicnei 12932    tX ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-topgen 12600  df-top 12790  df-topon 12803  df-bases 12835  df-nei 12933  df-tx 13047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator