Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neitx | Unicode version |
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
Ref | Expression |
---|---|
neitx.x | |
neitx.y |
Ref | Expression |
---|---|
neitx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neitx.x | . . . . . 6 | |
2 | 1 | neii1 12941 | . . . . 5 |
3 | 2 | ad2ant2r 506 | . . . 4 |
4 | neitx.y | . . . . . 6 | |
5 | 4 | neii1 12941 | . . . . 5 |
6 | 5 | ad2ant2l 505 | . . . 4 |
7 | xpss12 4718 | . . . 4 | |
8 | 3, 6, 7 | syl2anc 409 | . . 3 |
9 | 1, 4 | txuni 13057 | . . . 4 |
10 | 9 | adantr 274 | . . 3 |
11 | 8, 10 | sseqtrd 3185 | . 2 |
12 | simp-5l 538 | . . . . . 6 | |
13 | simp-4r 537 | . . . . . 6 | |
14 | simplr 525 | . . . . . 6 | |
15 | txopn 13059 | . . . . . 6 | |
16 | 12, 13, 14, 15 | syl12anc 1231 | . . . . 5 |
17 | simpr1l 1049 | . . . . . . 7 | |
18 | 17 | 3anassrs 1224 | . . . . . 6 |
19 | simprl 526 | . . . . . 6 | |
20 | xpss12 4718 | . . . . . 6 | |
21 | 18, 19, 20 | syl2anc 409 | . . . . 5 |
22 | simpr1r 1050 | . . . . . . 7 | |
23 | 22 | 3anassrs 1224 | . . . . . 6 |
24 | simprr 527 | . . . . . 6 | |
25 | xpss12 4718 | . . . . . 6 | |
26 | 23, 24, 25 | syl2anc 409 | . . . . 5 |
27 | sseq2 3171 | . . . . . . 7 | |
28 | sseq1 3170 | . . . . . . 7 | |
29 | 27, 28 | anbi12d 470 | . . . . . 6 |
30 | 29 | rspcev 2834 | . . . . 5 |
31 | 16, 21, 26, 30 | syl12anc 1231 | . . . 4 |
32 | neii2 12943 | . . . . . 6 | |
33 | 32 | ad2ant2l 505 | . . . . 5 |
34 | 33 | ad2antrr 485 | . . . 4 |
35 | 31, 34 | r19.29a 2613 | . . 3 |
36 | neii2 12943 | . . . 4 | |
37 | 36 | ad2ant2r 506 | . . 3 |
38 | 35, 37 | r19.29a 2613 | . 2 |
39 | txtop 13054 | . . . 4 | |
40 | 39 | adantr 274 | . . 3 |
41 | 1 | neiss2 12936 | . . . . . 6 |
42 | 41 | ad2ant2r 506 | . . . . 5 |
43 | 4 | neiss2 12936 | . . . . . 6 |
44 | 43 | ad2ant2l 505 | . . . . 5 |
45 | xpss12 4718 | . . . . 5 | |
46 | 42, 44, 45 | syl2anc 409 | . . . 4 |
47 | 46, 10 | sseqtrd 3185 | . . 3 |
48 | eqid 2170 | . . . 4 | |
49 | 48 | isnei 12938 | . . 3 |
50 | 40, 47, 49 | syl2anc 409 | . 2 |
51 | 11, 38, 50 | mpbir2and 939 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 wss 3121 cuni 3796 cxp 4609 cfv 5198 (class class class)co 5853 ctop 12789 cnei 12932 ctx 13046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-topgen 12600 df-top 12790 df-topon 12803 df-bases 12835 df-nei 12933 df-tx 13047 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |