ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpr1r Unicode version

Theorem simpr1r 1057
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpr1r  |-  ( ( ta  /\  ( (
ph  /\  ps )  /\  ch  /\  th )
)  ->  ps )

Proof of Theorem simpr1r
StepHypRef Expression
1 simp1r 1024 . 2  |-  ( ( ( ph  /\  ps )  /\  ch  /\  th )  ->  ps )
21adantl 277 1  |-  ( ( ta  /\  ( (
ph  /\  ps )  /\  ch  /\  th )
)  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  prcunqu  7545  prnminu  7549  neitx  14436
  Copyright terms: Public domain W3C validator