ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpr1r Unicode version

Theorem simpr1r 1045
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpr1r  |-  ( ( ta  /\  ( (
ph  /\  ps )  /\  ch  /\  th )
)  ->  ps )

Proof of Theorem simpr1r
StepHypRef Expression
1 simp1r 1012 . 2  |-  ( ( ( ph  /\  ps )  /\  ch  /\  th )  ->  ps )
21adantl 275 1  |-  ( ( ta  /\  ( (
ph  /\  ps )  /\  ch  /\  th )
)  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  prcunqu  7426  prnminu  7430  neitx  12918
  Copyright terms: Public domain W3C validator