| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1r | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | 1 | 3ad2ant1 1042 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl1r 1073 simpr1r 1079 simp11r 1133 simp21r 1139 simp31r 1145 vtoclgft 2851 en2lp 4645 funprg 5370 nnsucsssuc 6636 ecopovtrn 6777 ecopovtrng 6780 addassnqg 7565 distrnqg 7570 ltsonq 7581 ltanqg 7583 ltmnqg 7584 distrnq0 7642 addassnq0 7645 prarloclem5 7683 recexprlem1ssl 7816 recexprlem1ssu 7817 mulasssrg 7941 distrsrg 7942 lttrsr 7945 ltsosr 7947 ltasrg 7953 mulextsr1lem 7963 mulextsr1 7964 axmulass 8056 axdistr 8057 dmdcanap 8865 lt2msq1 9028 lediv2 9034 xaddass2 10062 xlt2add 10072 modqdi 10609 expaddzaplem 10799 expaddzap 10800 expmulzap 10802 swrdspsleq 11194 pfxeq 11223 bdtrilem 11745 xrbdtri 11782 bitsfzo 12461 prmexpb 12668 4sqlem18 12926 mgmsscl 13389 subgabl 13864 cnptoprest 14907 ssblps 15093 ssbl 15094 rplogbchbase 15618 rplogbreexp 15621 relogbcxpbap 15633 lgssq 15713 uhgr2edg 15998 |
| Copyright terms: Public domain | W3C validator |