![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1r | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant1 1020 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpl1r 1051 simpr1r 1057 simp11r 1111 simp21r 1117 simp31r 1123 vtoclgft 2811 en2lp 4587 funprg 5305 nnsucsssuc 6547 ecopovtrn 6688 ecopovtrng 6691 addassnqg 7444 distrnqg 7449 ltsonq 7460 ltanqg 7462 ltmnqg 7463 distrnq0 7521 addassnq0 7524 prarloclem5 7562 recexprlem1ssl 7695 recexprlem1ssu 7696 mulasssrg 7820 distrsrg 7821 lttrsr 7824 ltsosr 7826 ltasrg 7832 mulextsr1lem 7842 mulextsr1 7843 axmulass 7935 axdistr 7936 dmdcanap 8743 lt2msq1 8906 lediv2 8912 xaddass2 9939 xlt2add 9949 modqdi 10466 expaddzaplem 10656 expaddzap 10657 expmulzap 10659 bdtrilem 11385 xrbdtri 11422 prmexpb 12292 4sqlem18 12549 mgmsscl 12947 subgabl 13405 cnptoprest 14418 ssblps 14604 ssbl 14605 rplogbchbase 15123 rplogbreexp 15126 relogbcxpbap 15138 lgssq 15197 |
Copyright terms: Public domain | W3C validator |