![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1r | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 108 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant1 964 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 926 |
This theorem is referenced by: simpl1r 995 simpr1r 1001 simp11r 1055 simp21r 1061 simp31r 1067 vtoclgft 2669 en2lp 4370 funprg 5064 nnsucsssuc 6253 ecopovtrn 6389 ecopovtrng 6392 addassnqg 6941 distrnqg 6946 ltsonq 6957 ltanqg 6959 ltmnqg 6960 distrnq0 7018 addassnq0 7021 prarloclem5 7059 recexprlem1ssl 7192 recexprlem1ssu 7193 mulasssrg 7304 distrsrg 7305 lttrsr 7308 ltsosr 7310 ltasrg 7316 mulextsr1lem 7325 mulextsr1 7326 axmulass 7408 axdistr 7409 dmdcanap 8189 lt2msq1 8346 lediv2 8352 modqdi 9799 expaddzaplem 9998 expaddzap 9999 expmulzap 10001 prmexpb 11408 |
Copyright terms: Public domain | W3C validator |