| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1r | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | 1 | 3ad2ant1 1021 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl1r 1052 simpr1r 1058 simp11r 1112 simp21r 1118 simp31r 1124 vtoclgft 2828 en2lp 4620 funprg 5343 nnsucsssuc 6601 ecopovtrn 6742 ecopovtrng 6745 addassnqg 7530 distrnqg 7535 ltsonq 7546 ltanqg 7548 ltmnqg 7549 distrnq0 7607 addassnq0 7610 prarloclem5 7648 recexprlem1ssl 7781 recexprlem1ssu 7782 mulasssrg 7906 distrsrg 7907 lttrsr 7910 ltsosr 7912 ltasrg 7918 mulextsr1lem 7928 mulextsr1 7929 axmulass 8021 axdistr 8022 dmdcanap 8830 lt2msq1 8993 lediv2 8999 xaddass2 10027 xlt2add 10037 modqdi 10574 expaddzaplem 10764 expaddzap 10765 expmulzap 10767 swrdspsleq 11158 pfxeq 11187 bdtrilem 11665 xrbdtri 11702 bitsfzo 12381 prmexpb 12588 4sqlem18 12846 mgmsscl 13308 subgabl 13783 cnptoprest 14826 ssblps 15012 ssbl 15013 rplogbchbase 15537 rplogbreexp 15540 relogbcxpbap 15552 lgssq 15632 |
| Copyright terms: Public domain | W3C validator |