| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcunqu | Unicode version | ||
| Description: An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| prcunqu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 7552 |
. . . . . 6
| |
| 2 | 1 | brel 4771 |
. . . . 5
|
| 3 | 2 | simprd 114 |
. . . 4
|
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | breq2 4087 |
. . . . . . 7
| |
| 6 | eleq1 2292 |
. . . . . . 7
| |
| 7 | 5, 6 | imbi12d 234 |
. . . . . 6
|
| 8 | 7 | imbi2d 230 |
. . . . 5
|
| 9 | 1 | brel 4771 |
. . . . . . . 8
|
| 10 | an42 587 |
. . . . . . . . 9
| |
| 11 | breq1 4086 |
. . . . . . . . . . . . . . . 16
| |
| 12 | eleq1 2292 |
. . . . . . . . . . . . . . . 16
| |
| 13 | 11, 12 | anbi12d 473 |
. . . . . . . . . . . . . . 15
|
| 14 | 13 | rspcev 2907 |
. . . . . . . . . . . . . 14
|
| 15 | elinp 7661 |
. . . . . . . . . . . . . . . 16
| |
| 16 | simpr1r 1079 |
. . . . . . . . . . . . . . . 16
| |
| 17 | 15, 16 | sylbi 121 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | r19.21bi 2618 |
. . . . . . . . . . . . . 14
|
| 19 | 14, 18 | syl5ibrcom 157 |
. . . . . . . . . . . . 13
|
| 20 | 19 | 3impb 1223 |
. . . . . . . . . . . 12
|
| 21 | 20 | 3com12 1231 |
. . . . . . . . . . 11
|
| 22 | 21 | 3expib 1230 |
. . . . . . . . . 10
|
| 23 | 22 | impd 254 |
. . . . . . . . 9
|
| 24 | 10, 23 | biimtrid 152 |
. . . . . . . 8
|
| 25 | 9, 24 | mpand 429 |
. . . . . . 7
|
| 26 | 25 | com12 30 |
. . . . . 6
|
| 27 | 26 | ancoms 268 |
. . . . 5
|
| 28 | 8, 27 | vtoclg 2861 |
. . . 4
|
| 29 | 28 | impd 254 |
. . 3
|
| 30 | 4, 29 | mpcom 36 |
. 2
|
| 31 | 30 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-qs 6686 df-ni 7491 df-nqqs 7535 df-ltnqqs 7540 df-inp 7653 |
| This theorem is referenced by: prarloc 7690 prarloc2 7691 addnqprulem 7715 nqpru 7739 prmuloc2 7754 mulnqpru 7756 distrlem4pru 7772 1idpru 7778 ltexprlemm 7787 ltexprlemupu 7791 ltexprlemrl 7797 ltexprlemfu 7798 ltexprlemru 7799 aptiprlemu 7827 suplocexprlemdisj 7907 suplocexprlemub 7910 |
| Copyright terms: Public domain | W3C validator |