| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcunqu | Unicode version | ||
| Description: An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| prcunqu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 7480 |
. . . . . 6
| |
| 2 | 1 | brel 4728 |
. . . . 5
|
| 3 | 2 | simprd 114 |
. . . 4
|
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | breq2 4049 |
. . . . . . 7
| |
| 6 | eleq1 2268 |
. . . . . . 7
| |
| 7 | 5, 6 | imbi12d 234 |
. . . . . 6
|
| 8 | 7 | imbi2d 230 |
. . . . 5
|
| 9 | 1 | brel 4728 |
. . . . . . . 8
|
| 10 | an42 587 |
. . . . . . . . 9
| |
| 11 | breq1 4048 |
. . . . . . . . . . . . . . . 16
| |
| 12 | eleq1 2268 |
. . . . . . . . . . . . . . . 16
| |
| 13 | 11, 12 | anbi12d 473 |
. . . . . . . . . . . . . . 15
|
| 14 | 13 | rspcev 2877 |
. . . . . . . . . . . . . 14
|
| 15 | elinp 7589 |
. . . . . . . . . . . . . . . 16
| |
| 16 | simpr1r 1058 |
. . . . . . . . . . . . . . . 16
| |
| 17 | 15, 16 | sylbi 121 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | r19.21bi 2594 |
. . . . . . . . . . . . . 14
|
| 19 | 14, 18 | syl5ibrcom 157 |
. . . . . . . . . . . . 13
|
| 20 | 19 | 3impb 1202 |
. . . . . . . . . . . 12
|
| 21 | 20 | 3com12 1210 |
. . . . . . . . . . 11
|
| 22 | 21 | 3expib 1209 |
. . . . . . . . . 10
|
| 23 | 22 | impd 254 |
. . . . . . . . 9
|
| 24 | 10, 23 | biimtrid 152 |
. . . . . . . 8
|
| 25 | 9, 24 | mpand 429 |
. . . . . . 7
|
| 26 | 25 | com12 30 |
. . . . . 6
|
| 27 | 26 | ancoms 268 |
. . . . 5
|
| 28 | 8, 27 | vtoclg 2833 |
. . . 4
|
| 29 | 28 | impd 254 |
. . 3
|
| 30 | 4, 29 | mpcom 36 |
. 2
|
| 31 | 30 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-qs 6628 df-ni 7419 df-nqqs 7463 df-ltnqqs 7468 df-inp 7581 |
| This theorem is referenced by: prarloc 7618 prarloc2 7619 addnqprulem 7643 nqpru 7667 prmuloc2 7682 mulnqpru 7684 distrlem4pru 7700 1idpru 7706 ltexprlemm 7715 ltexprlemupu 7719 ltexprlemrl 7725 ltexprlemfu 7726 ltexprlemru 7727 aptiprlemu 7755 suplocexprlemdisj 7835 suplocexprlemub 7838 |
| Copyright terms: Public domain | W3C validator |