ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcunqu Unicode version

Theorem prcunqu 7475
Description: An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prcunqu  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) )

Proof of Theorem prcunqu
Dummy variables  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7355 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4675 . . . . 5  |-  ( C 
<Q  B  ->  ( C  e.  Q.  /\  B  e.  Q. ) )
32simprd 114 . . . 4  |-  ( C 
<Q  B  ->  B  e. 
Q. )
43adantl 277 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  /\  C  <Q  B )  ->  B  e.  Q. )
5 breq2 4004 . . . . . . 7  |-  ( b  =  B  ->  ( C  <Q  b  <->  C  <Q  B ) )
6 eleq1 2240 . . . . . . 7  |-  ( b  =  B  ->  (
b  e.  U  <->  B  e.  U ) )
75, 6imbi12d 234 . . . . . 6  |-  ( b  =  B  ->  (
( C  <Q  b  ->  b  e.  U )  <-> 
( C  <Q  B  ->  B  e.  U )
) )
87imbi2d 230 . . . . 5  |-  ( b  =  B  ->  (
( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  ->  ( C  <Q  b  ->  b  e.  U ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) ) ) )
91brel 4675 . . . . . . . 8  |-  ( C 
<Q  b  ->  ( C  e.  Q.  /\  b  e.  Q. ) )
10 an42 587 . . . . . . . . 9  |-  ( ( ( C  e.  Q.  /\  b  e.  Q. )  /\  ( C  e.  U  /\  <. L ,  U >.  e.  P. ) )  <-> 
( ( C  e. 
Q.  /\  C  e.  U )  /\  ( <. L ,  U >.  e. 
P.  /\  b  e.  Q. ) ) )
11 breq1 4003 . . . . . . . . . . . . . . . 16  |-  ( c  =  C  ->  (
c  <Q  b  <->  C  <Q  b ) )
12 eleq1 2240 . . . . . . . . . . . . . . . 16  |-  ( c  =  C  ->  (
c  e.  U  <->  C  e.  U ) )
1311, 12anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( c  =  C  ->  (
( c  <Q  b  /\  c  e.  U
)  <->  ( C  <Q  b  /\  C  e.  U
) ) )
1413rspcev 2841 . . . . . . . . . . . . . 14  |-  ( ( C  e.  Q.  /\  ( C  <Q  b  /\  C  e.  U )
)  ->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) )
15 elinp 7464 . . . . . . . . . . . . . . . 16  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U ) )  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) ) )
16 simpr1r 1055 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U )
)  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) )  ->  A. b  e.  Q.  ( b  e.  U  <->  E. c  e.  Q.  ( c  <Q  b  /\  c  e.  U
) ) )
1715, 16sylbi 121 . . . . . . . . . . . . . . 15  |-  ( <. L ,  U >.  e. 
P.  ->  A. b  e.  Q.  ( b  e.  U  <->  E. c  e.  Q.  (
c  <Q  b  /\  c  e.  U ) ) )
1817r19.21bi 2565 . . . . . . . . . . . . . 14  |-  ( (
<. L ,  U >.  e. 
P.  /\  b  e.  Q. )  ->  ( b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )
1914, 18syl5ibrcom 157 . . . . . . . . . . . . 13  |-  ( ( C  e.  Q.  /\  ( C  <Q  b  /\  C  e.  U )
)  ->  ( ( <. L ,  U >.  e. 
P.  /\  b  e.  Q. )  ->  b  e.  U ) )
20193impb 1199 . . . . . . . . . . . 12  |-  ( ( C  e.  Q.  /\  C  <Q  b  /\  C  e.  U )  ->  (
( <. L ,  U >.  e.  P.  /\  b  e.  Q. )  ->  b  e.  U ) )
21203com12 1207 . . . . . . . . . . 11  |-  ( ( C  <Q  b  /\  C  e.  Q.  /\  C  e.  U )  ->  (
( <. L ,  U >.  e.  P.  /\  b  e.  Q. )  ->  b  e.  U ) )
22213expib 1206 . . . . . . . . . 10  |-  ( C 
<Q  b  ->  ( ( C  e.  Q.  /\  C  e.  U )  ->  ( ( <. L ,  U >.  e.  P.  /\  b  e.  Q. )  ->  b  e.  U ) ) )
2322impd 254 . . . . . . . . 9  |-  ( C 
<Q  b  ->  ( ( ( C  e.  Q.  /\  C  e.  U )  /\  ( <. L ,  U >.  e.  P.  /\  b  e.  Q. )
)  ->  b  e.  U ) )
2410, 23biimtrid 152 . . . . . . . 8  |-  ( C 
<Q  b  ->  ( ( ( C  e.  Q.  /\  b  e.  Q. )  /\  ( C  e.  U  /\  <. L ,  U >.  e.  P. ) )  ->  b  e.  U
) )
259, 24mpand 429 . . . . . . 7  |-  ( C 
<Q  b  ->  ( ( C  e.  U  /\  <. L ,  U >.  e. 
P. )  ->  b  e.  U ) )
2625com12 30 . . . . . 6  |-  ( ( C  e.  U  /\  <. L ,  U >.  e. 
P. )  ->  ( C  <Q  b  ->  b  e.  U ) )
2726ancoms 268 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  b  ->  b  e.  U ) )
288, 27vtoclg 2797 . . . 4  |-  ( B  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) ) )
2928impd 254 . . 3  |-  ( B  e.  Q.  ->  (
( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  /\  C  <Q  B )  ->  B  e.  U
) )
304, 29mpcom 36 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  /\  C  <Q  B )  ->  B  e.  U )
3130ex 115 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3129   <.cop 3594   class class class wbr 4000   Q.cnq 7270    <Q cltq 7275   P.cnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-qs 6535  df-ni 7294  df-nqqs 7338  df-ltnqqs 7343  df-inp 7456
This theorem is referenced by:  prarloc  7493  prarloc2  7494  addnqprulem  7518  nqpru  7542  prmuloc2  7557  mulnqpru  7559  distrlem4pru  7575  1idpru  7581  ltexprlemm  7590  ltexprlemupu  7594  ltexprlemrl  7600  ltexprlemfu  7601  ltexprlemru  7602  aptiprlemu  7630  suplocexprlemdisj  7710  suplocexprlemub  7713
  Copyright terms: Public domain W3C validator