| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcunqu | Unicode version | ||
| Description: An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| prcunqu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 7513 |
. . . . . 6
| |
| 2 | 1 | brel 4745 |
. . . . 5
|
| 3 | 2 | simprd 114 |
. . . 4
|
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | breq2 4063 |
. . . . . . 7
| |
| 6 | eleq1 2270 |
. . . . . . 7
| |
| 7 | 5, 6 | imbi12d 234 |
. . . . . 6
|
| 8 | 7 | imbi2d 230 |
. . . . 5
|
| 9 | 1 | brel 4745 |
. . . . . . . 8
|
| 10 | an42 587 |
. . . . . . . . 9
| |
| 11 | breq1 4062 |
. . . . . . . . . . . . . . . 16
| |
| 12 | eleq1 2270 |
. . . . . . . . . . . . . . . 16
| |
| 13 | 11, 12 | anbi12d 473 |
. . . . . . . . . . . . . . 15
|
| 14 | 13 | rspcev 2884 |
. . . . . . . . . . . . . 14
|
| 15 | elinp 7622 |
. . . . . . . . . . . . . . . 16
| |
| 16 | simpr1r 1058 |
. . . . . . . . . . . . . . . 16
| |
| 17 | 15, 16 | sylbi 121 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | r19.21bi 2596 |
. . . . . . . . . . . . . 14
|
| 19 | 14, 18 | syl5ibrcom 157 |
. . . . . . . . . . . . 13
|
| 20 | 19 | 3impb 1202 |
. . . . . . . . . . . 12
|
| 21 | 20 | 3com12 1210 |
. . . . . . . . . . 11
|
| 22 | 21 | 3expib 1209 |
. . . . . . . . . 10
|
| 23 | 22 | impd 254 |
. . . . . . . . 9
|
| 24 | 10, 23 | biimtrid 152 |
. . . . . . . 8
|
| 25 | 9, 24 | mpand 429 |
. . . . . . 7
|
| 26 | 25 | com12 30 |
. . . . . 6
|
| 27 | 26 | ancoms 268 |
. . . . 5
|
| 28 | 8, 27 | vtoclg 2838 |
. . . 4
|
| 29 | 28 | impd 254 |
. . 3
|
| 30 | 4, 29 | mpcom 36 |
. 2
|
| 31 | 30 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-qs 6649 df-ni 7452 df-nqqs 7496 df-ltnqqs 7501 df-inp 7614 |
| This theorem is referenced by: prarloc 7651 prarloc2 7652 addnqprulem 7676 nqpru 7700 prmuloc2 7715 mulnqpru 7717 distrlem4pru 7733 1idpru 7739 ltexprlemm 7748 ltexprlemupu 7752 ltexprlemrl 7758 ltexprlemfu 7759 ltexprlemru 7760 aptiprlemu 7788 suplocexprlemdisj 7868 suplocexprlemub 7871 |
| Copyright terms: Public domain | W3C validator |