ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcunqu Unicode version

Theorem prcunqu 7547
Description: An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prcunqu  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) )

Proof of Theorem prcunqu
Dummy variables  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7427 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4712 . . . . 5  |-  ( C 
<Q  B  ->  ( C  e.  Q.  /\  B  e.  Q. ) )
32simprd 114 . . . 4  |-  ( C 
<Q  B  ->  B  e. 
Q. )
43adantl 277 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  /\  C  <Q  B )  ->  B  e.  Q. )
5 breq2 4034 . . . . . . 7  |-  ( b  =  B  ->  ( C  <Q  b  <->  C  <Q  B ) )
6 eleq1 2256 . . . . . . 7  |-  ( b  =  B  ->  (
b  e.  U  <->  B  e.  U ) )
75, 6imbi12d 234 . . . . . 6  |-  ( b  =  B  ->  (
( C  <Q  b  ->  b  e.  U )  <-> 
( C  <Q  B  ->  B  e.  U )
) )
87imbi2d 230 . . . . 5  |-  ( b  =  B  ->  (
( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  ->  ( C  <Q  b  ->  b  e.  U ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) ) ) )
91brel 4712 . . . . . . . 8  |-  ( C 
<Q  b  ->  ( C  e.  Q.  /\  b  e.  Q. ) )
10 an42 587 . . . . . . . . 9  |-  ( ( ( C  e.  Q.  /\  b  e.  Q. )  /\  ( C  e.  U  /\  <. L ,  U >.  e.  P. ) )  <-> 
( ( C  e. 
Q.  /\  C  e.  U )  /\  ( <. L ,  U >.  e. 
P.  /\  b  e.  Q. ) ) )
11 breq1 4033 . . . . . . . . . . . . . . . 16  |-  ( c  =  C  ->  (
c  <Q  b  <->  C  <Q  b ) )
12 eleq1 2256 . . . . . . . . . . . . . . . 16  |-  ( c  =  C  ->  (
c  e.  U  <->  C  e.  U ) )
1311, 12anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( c  =  C  ->  (
( c  <Q  b  /\  c  e.  U
)  <->  ( C  <Q  b  /\  C  e.  U
) ) )
1413rspcev 2865 . . . . . . . . . . . . . 14  |-  ( ( C  e.  Q.  /\  ( C  <Q  b  /\  C  e.  U )
)  ->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) )
15 elinp 7536 . . . . . . . . . . . . . . . 16  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U ) )  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) ) )
16 simpr1r 1057 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U )
)  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) )  ->  A. b  e.  Q.  ( b  e.  U  <->  E. c  e.  Q.  ( c  <Q  b  /\  c  e.  U
) ) )
1715, 16sylbi 121 . . . . . . . . . . . . . . 15  |-  ( <. L ,  U >.  e. 
P.  ->  A. b  e.  Q.  ( b  e.  U  <->  E. c  e.  Q.  (
c  <Q  b  /\  c  e.  U ) ) )
1817r19.21bi 2582 . . . . . . . . . . . . . 14  |-  ( (
<. L ,  U >.  e. 
P.  /\  b  e.  Q. )  ->  ( b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )
1914, 18syl5ibrcom 157 . . . . . . . . . . . . 13  |-  ( ( C  e.  Q.  /\  ( C  <Q  b  /\  C  e.  U )
)  ->  ( ( <. L ,  U >.  e. 
P.  /\  b  e.  Q. )  ->  b  e.  U ) )
20193impb 1201 . . . . . . . . . . . 12  |-  ( ( C  e.  Q.  /\  C  <Q  b  /\  C  e.  U )  ->  (
( <. L ,  U >.  e.  P.  /\  b  e.  Q. )  ->  b  e.  U ) )
21203com12 1209 . . . . . . . . . . 11  |-  ( ( C  <Q  b  /\  C  e.  Q.  /\  C  e.  U )  ->  (
( <. L ,  U >.  e.  P.  /\  b  e.  Q. )  ->  b  e.  U ) )
22213expib 1208 . . . . . . . . . 10  |-  ( C 
<Q  b  ->  ( ( C  e.  Q.  /\  C  e.  U )  ->  ( ( <. L ,  U >.  e.  P.  /\  b  e.  Q. )  ->  b  e.  U ) ) )
2322impd 254 . . . . . . . . 9  |-  ( C 
<Q  b  ->  ( ( ( C  e.  Q.  /\  C  e.  U )  /\  ( <. L ,  U >.  e.  P.  /\  b  e.  Q. )
)  ->  b  e.  U ) )
2410, 23biimtrid 152 . . . . . . . 8  |-  ( C 
<Q  b  ->  ( ( ( C  e.  Q.  /\  b  e.  Q. )  /\  ( C  e.  U  /\  <. L ,  U >.  e.  P. ) )  ->  b  e.  U
) )
259, 24mpand 429 . . . . . . 7  |-  ( C 
<Q  b  ->  ( ( C  e.  U  /\  <. L ,  U >.  e. 
P. )  ->  b  e.  U ) )
2625com12 30 . . . . . 6  |-  ( ( C  e.  U  /\  <. L ,  U >.  e. 
P. )  ->  ( C  <Q  b  ->  b  e.  U ) )
2726ancoms 268 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  b  ->  b  e.  U ) )
288, 27vtoclg 2821 . . . 4  |-  ( B  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) ) )
2928impd 254 . . 3  |-  ( B  e.  Q.  ->  (
( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  /\  C  <Q  B )  ->  B  e.  U
) )
304, 29mpcom 36 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  /\  C  <Q  B )  ->  B  e.  U )
3130ex 115 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3154   <.cop 3622   class class class wbr 4030   Q.cnq 7342    <Q cltq 7347   P.cnp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-qs 6595  df-ni 7366  df-nqqs 7410  df-ltnqqs 7415  df-inp 7528
This theorem is referenced by:  prarloc  7565  prarloc2  7566  addnqprulem  7590  nqpru  7614  prmuloc2  7629  mulnqpru  7631  distrlem4pru  7647  1idpru  7653  ltexprlemm  7662  ltexprlemupu  7666  ltexprlemrl  7672  ltexprlemfu  7673  ltexprlemru  7674  aptiprlemu  7702  suplocexprlemdisj  7782  suplocexprlemub  7785
  Copyright terms: Public domain W3C validator