ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnminu Unicode version

Theorem prnminu 7676
Description: An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.)
Assertion
Ref Expression
prnminu  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  E. x  e.  U  x  <Q  B )
Distinct variable groups:    x, B    x, L    x, U

Proof of Theorem prnminu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elprnqu 7669 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  B  e.  Q. )
2 elinp 7661 . . . . . . . 8  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. x  e.  Q.  x  e.  L  /\  E. y  e.  Q.  y  e.  U ) )  /\  ( ( A. x  e.  Q.  ( x  e.  L  <->  E. y  e.  Q.  ( x  <Q  y  /\  y  e.  L )
)  /\  A. y  e.  Q.  ( y  e.  U  <->  E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U )
) )  /\  A. x  e.  Q.  -.  (
x  e.  L  /\  x  e.  U )  /\  A. x  e.  Q.  A. y  e.  Q.  (
x  <Q  y  ->  (
x  e.  L  \/  y  e.  U )
) ) ) )
3 simpr1r 1079 . . . . . . . 8  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. x  e.  Q.  x  e.  L  /\  E. y  e.  Q.  y  e.  U )
)  /\  ( ( A. x  e.  Q.  ( x  e.  L  <->  E. y  e.  Q.  (
x  <Q  y  /\  y  e.  L ) )  /\  A. y  e.  Q.  (
y  e.  U  <->  E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U
) ) )  /\  A. x  e.  Q.  -.  ( x  e.  L  /\  x  e.  U
)  /\  A. x  e.  Q.  A. y  e. 
Q.  ( x  <Q  y  ->  ( x  e.  L  \/  y  e.  U ) ) ) )  ->  A. y  e.  Q.  ( y  e.  U  <->  E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U )
) )
42, 3sylbi 121 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P.  ->  A. y  e.  Q.  ( y  e.  U  <->  E. x  e.  Q.  (
x  <Q  y  /\  x  e.  U ) ) )
5 eleq1 2292 . . . . . . . . 9  |-  ( y  =  B  ->  (
y  e.  U  <->  B  e.  U ) )
6 breq2 4087 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
x  <Q  y  <->  x  <Q  B ) )
76anbi1d 465 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( x  <Q  y  /\  x  e.  U
)  <->  ( x  <Q  B  /\  x  e.  U
) ) )
87rexbidv 2531 . . . . . . . . 9  |-  ( y  =  B  ->  ( E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U )  <->  E. x  e.  Q.  (
x  <Q  B  /\  x  e.  U ) ) )
95, 8bibi12d 235 . . . . . . . 8  |-  ( y  =  B  ->  (
( y  e.  U  <->  E. x  e.  Q.  (
x  <Q  y  /\  x  e.  U ) )  <->  ( B  e.  U  <->  E. x  e.  Q.  ( x  <Q  B  /\  x  e.  U )
) ) )
109rspcv 2903 . . . . . . 7  |-  ( B  e.  Q.  ->  ( A. y  e.  Q.  ( y  e.  U  <->  E. x  e.  Q.  (
x  <Q  y  /\  x  e.  U ) )  -> 
( B  e.  U  <->  E. x  e.  Q.  (
x  <Q  B  /\  x  e.  U ) ) ) )
11 biimp 118 . . . . . . 7  |-  ( ( B  e.  U  <->  E. x  e.  Q.  ( x  <Q  B  /\  x  e.  U
) )  ->  ( B  e.  U  ->  E. x  e.  Q.  (
x  <Q  B  /\  x  e.  U ) ) )
124, 10, 11syl56 34 . . . . . 6  |-  ( B  e.  Q.  ->  ( <. L ,  U >.  e. 
P.  ->  ( B  e.  U  ->  E. x  e.  Q.  ( x  <Q  B  /\  x  e.  U
) ) ) )
1312impd 254 . . . . 5  |-  ( B  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  B  e.  U )  ->  E. x  e.  Q.  ( x  <Q  B  /\  x  e.  U
) ) )
141, 13mpcom 36 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  E. x  e.  Q.  ( x  <Q  B  /\  x  e.  U
) )
15 df-rex 2514 . . . 4  |-  ( E. x  e.  Q.  (
x  <Q  B  /\  x  e.  U )  <->  E. x
( x  e.  Q.  /\  ( x  <Q  B  /\  x  e.  U )
) )
1614, 15sylib 122 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  E. x
( x  e.  Q.  /\  ( x  <Q  B  /\  x  e.  U )
) )
17 ltrelnq 7552 . . . . . . . . 9  |-  <Q  C_  ( Q.  X.  Q. )
1817brel 4771 . . . . . . . 8  |-  ( x 
<Q  B  ->  ( x  e.  Q.  /\  B  e.  Q. ) )
1918simpld 112 . . . . . . 7  |-  ( x 
<Q  B  ->  x  e. 
Q. )
2019pm4.71ri 392 . . . . . 6  |-  ( x 
<Q  B  <->  ( x  e. 
Q.  /\  x  <Q  B ) )
2120anbi1i 458 . . . . 5  |-  ( ( x  <Q  B  /\  x  e.  U )  <->  ( ( x  e.  Q.  /\  x  <Q  B )  /\  x  e.  U
) )
22 ancom 266 . . . . 5  |-  ( ( x  <Q  B  /\  x  e.  U )  <->  ( x  e.  U  /\  x  <Q  B ) )
23 anass 401 . . . . 5  |-  ( ( ( x  e.  Q.  /\  x  <Q  B )  /\  x  e.  U
)  <->  ( x  e. 
Q.  /\  ( x  <Q  B  /\  x  e.  U ) ) )
2421, 22, 233bitr3i 210 . . . 4  |-  ( ( x  e.  U  /\  x  <Q  B )  <->  ( x  e.  Q.  /\  ( x 
<Q  B  /\  x  e.  U ) ) )
2524exbii 1651 . . 3  |-  ( E. x ( x  e.  U  /\  x  <Q  B )  <->  E. x ( x  e.  Q.  /\  (
x  <Q  B  /\  x  e.  U ) ) )
2616, 25sylibr 134 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  E. x
( x  e.  U  /\  x  <Q  B ) )
27 df-rex 2514 . 2  |-  ( E. x  e.  U  x 
<Q  B  <->  E. x ( x  e.  U  /\  x  <Q  B ) )
2826, 27sylibr 134 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  E. x  e.  U  x  <Q  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   <.cop 3669   class class class wbr 4083   Q.cnq 7467    <Q cltq 7472   P.cnp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-qs 6686  df-ni 7491  df-nqqs 7535  df-ltnqqs 7540  df-inp 7653
This theorem is referenced by:  genprndu  7709  nqpru  7739  1idpru  7778  ltsopr  7783  ltexprlemopu  7790  ltexprlemru  7799  addcanprlemu  7802  recexprlemloc  7818  recexprlem1ssu  7821  aptiprlemu  7827
  Copyright terms: Public domain W3C validator