Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prnminu | Unicode version |
Description: An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.) |
Ref | Expression |
---|---|
prnminu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnqu 7423 | . . . . 5 | |
2 | elinp 7415 | . . . . . . . 8 | |
3 | simpr1r 1045 | . . . . . . . 8 | |
4 | 2, 3 | sylbi 120 | . . . . . . 7 |
5 | eleq1 2229 | . . . . . . . . 9 | |
6 | breq2 3986 | . . . . . . . . . . 11 | |
7 | 6 | anbi1d 461 | . . . . . . . . . 10 |
8 | 7 | rexbidv 2467 | . . . . . . . . 9 |
9 | 5, 8 | bibi12d 234 | . . . . . . . 8 |
10 | 9 | rspcv 2826 | . . . . . . 7 |
11 | biimp 117 | . . . . . . 7 | |
12 | 4, 10, 11 | syl56 34 | . . . . . 6 |
13 | 12 | impd 252 | . . . . 5 |
14 | 1, 13 | mpcom 36 | . . . 4 |
15 | df-rex 2450 | . . . 4 | |
16 | 14, 15 | sylib 121 | . . 3 |
17 | ltrelnq 7306 | . . . . . . . . 9 | |
18 | 17 | brel 4656 | . . . . . . . 8 |
19 | 18 | simpld 111 | . . . . . . 7 |
20 | 19 | pm4.71ri 390 | . . . . . 6 |
21 | 20 | anbi1i 454 | . . . . 5 |
22 | ancom 264 | . . . . 5 | |
23 | anass 399 | . . . . 5 | |
24 | 21, 22, 23 | 3bitr3i 209 | . . . 4 |
25 | 24 | exbii 1593 | . . 3 |
26 | 16, 25 | sylibr 133 | . 2 |
27 | df-rex 2450 | . 2 | |
28 | 26, 27 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 wss 3116 cop 3579 class class class wbr 3982 cnq 7221 cltq 7226 cnp 7232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-qs 6507 df-ni 7245 df-nqqs 7289 df-ltnqqs 7294 df-inp 7407 |
This theorem is referenced by: genprndu 7463 nqpru 7493 1idpru 7532 ltsopr 7537 ltexprlemopu 7544 ltexprlemru 7553 addcanprlemu 7556 recexprlemloc 7572 recexprlem1ssu 7575 aptiprlemu 7581 |
Copyright terms: Public domain | W3C validator |