ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnminu Unicode version

Theorem prnminu 7502
Description: An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.)
Assertion
Ref Expression
prnminu  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  E. x  e.  U  x  <Q  B )
Distinct variable groups:    x, B    x, L    x, U

Proof of Theorem prnminu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elprnqu 7495 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  B  e.  Q. )
2 elinp 7487 . . . . . . . 8  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. x  e.  Q.  x  e.  L  /\  E. y  e.  Q.  y  e.  U ) )  /\  ( ( A. x  e.  Q.  ( x  e.  L  <->  E. y  e.  Q.  ( x  <Q  y  /\  y  e.  L )
)  /\  A. y  e.  Q.  ( y  e.  U  <->  E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U )
) )  /\  A. x  e.  Q.  -.  (
x  e.  L  /\  x  e.  U )  /\  A. x  e.  Q.  A. y  e.  Q.  (
x  <Q  y  ->  (
x  e.  L  \/  y  e.  U )
) ) ) )
3 simpr1r 1056 . . . . . . . 8  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. x  e.  Q.  x  e.  L  /\  E. y  e.  Q.  y  e.  U )
)  /\  ( ( A. x  e.  Q.  ( x  e.  L  <->  E. y  e.  Q.  (
x  <Q  y  /\  y  e.  L ) )  /\  A. y  e.  Q.  (
y  e.  U  <->  E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U
) ) )  /\  A. x  e.  Q.  -.  ( x  e.  L  /\  x  e.  U
)  /\  A. x  e.  Q.  A. y  e. 
Q.  ( x  <Q  y  ->  ( x  e.  L  \/  y  e.  U ) ) ) )  ->  A. y  e.  Q.  ( y  e.  U  <->  E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U )
) )
42, 3sylbi 121 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P.  ->  A. y  e.  Q.  ( y  e.  U  <->  E. x  e.  Q.  (
x  <Q  y  /\  x  e.  U ) ) )
5 eleq1 2250 . . . . . . . . 9  |-  ( y  =  B  ->  (
y  e.  U  <->  B  e.  U ) )
6 breq2 4019 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
x  <Q  y  <->  x  <Q  B ) )
76anbi1d 465 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( x  <Q  y  /\  x  e.  U
)  <->  ( x  <Q  B  /\  x  e.  U
) ) )
87rexbidv 2488 . . . . . . . . 9  |-  ( y  =  B  ->  ( E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U )  <->  E. x  e.  Q.  (
x  <Q  B  /\  x  e.  U ) ) )
95, 8bibi12d 235 . . . . . . . 8  |-  ( y  =  B  ->  (
( y  e.  U  <->  E. x  e.  Q.  (
x  <Q  y  /\  x  e.  U ) )  <->  ( B  e.  U  <->  E. x  e.  Q.  ( x  <Q  B  /\  x  e.  U )
) ) )
109rspcv 2849 . . . . . . 7  |-  ( B  e.  Q.  ->  ( A. y  e.  Q.  ( y  e.  U  <->  E. x  e.  Q.  (
x  <Q  y  /\  x  e.  U ) )  -> 
( B  e.  U  <->  E. x  e.  Q.  (
x  <Q  B  /\  x  e.  U ) ) ) )
11 biimp 118 . . . . . . 7  |-  ( ( B  e.  U  <->  E. x  e.  Q.  ( x  <Q  B  /\  x  e.  U
) )  ->  ( B  e.  U  ->  E. x  e.  Q.  (
x  <Q  B  /\  x  e.  U ) ) )
124, 10, 11syl56 34 . . . . . 6  |-  ( B  e.  Q.  ->  ( <. L ,  U >.  e. 
P.  ->  ( B  e.  U  ->  E. x  e.  Q.  ( x  <Q  B  /\  x  e.  U
) ) ) )
1312impd 254 . . . . 5  |-  ( B  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  B  e.  U )  ->  E. x  e.  Q.  ( x  <Q  B  /\  x  e.  U
) ) )
141, 13mpcom 36 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  E. x  e.  Q.  ( x  <Q  B  /\  x  e.  U
) )
15 df-rex 2471 . . . 4  |-  ( E. x  e.  Q.  (
x  <Q  B  /\  x  e.  U )  <->  E. x
( x  e.  Q.  /\  ( x  <Q  B  /\  x  e.  U )
) )
1614, 15sylib 122 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  E. x
( x  e.  Q.  /\  ( x  <Q  B  /\  x  e.  U )
) )
17 ltrelnq 7378 . . . . . . . . 9  |-  <Q  C_  ( Q.  X.  Q. )
1817brel 4690 . . . . . . . 8  |-  ( x 
<Q  B  ->  ( x  e.  Q.  /\  B  e.  Q. ) )
1918simpld 112 . . . . . . 7  |-  ( x 
<Q  B  ->  x  e. 
Q. )
2019pm4.71ri 392 . . . . . 6  |-  ( x 
<Q  B  <->  ( x  e. 
Q.  /\  x  <Q  B ) )
2120anbi1i 458 . . . . 5  |-  ( ( x  <Q  B  /\  x  e.  U )  <->  ( ( x  e.  Q.  /\  x  <Q  B )  /\  x  e.  U
) )
22 ancom 266 . . . . 5  |-  ( ( x  <Q  B  /\  x  e.  U )  <->  ( x  e.  U  /\  x  <Q  B ) )
23 anass 401 . . . . 5  |-  ( ( ( x  e.  Q.  /\  x  <Q  B )  /\  x  e.  U
)  <->  ( x  e. 
Q.  /\  ( x  <Q  B  /\  x  e.  U ) ) )
2421, 22, 233bitr3i 210 . . . 4  |-  ( ( x  e.  U  /\  x  <Q  B )  <->  ( x  e.  Q.  /\  ( x 
<Q  B  /\  x  e.  U ) ) )
2524exbii 1615 . . 3  |-  ( E. x ( x  e.  U  /\  x  <Q  B )  <->  E. x ( x  e.  Q.  /\  (
x  <Q  B  /\  x  e.  U ) ) )
2616, 25sylibr 134 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  E. x
( x  e.  U  /\  x  <Q  B ) )
27 df-rex 2471 . 2  |-  ( E. x  e.  U  x 
<Q  B  <->  E. x ( x  e.  U  /\  x  <Q  B ) )
2826, 27sylibr 134 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  E. x  e.  U  x  <Q  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 979    = wceq 1363   E.wex 1502    e. wcel 2158   A.wral 2465   E.wrex 2466    C_ wss 3141   <.cop 3607   class class class wbr 4015   Q.cnq 7293    <Q cltq 7298   P.cnp 7304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-qs 6555  df-ni 7317  df-nqqs 7361  df-ltnqqs 7366  df-inp 7479
This theorem is referenced by:  genprndu  7535  nqpru  7565  1idpru  7604  ltsopr  7609  ltexprlemopu  7616  ltexprlemru  7625  addcanprlemu  7628  recexprlemloc  7644  recexprlem1ssu  7647  aptiprlemu  7653
  Copyright terms: Public domain W3C validator