ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimed Unicode version

Theorem spimed 1733
Description: Deduction version of spime 1734. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.)
Hypotheses
Ref Expression
spimed.1  |-  ( ch 
->  F/ x ph )
spimed.2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spimed  |-  ( ch 
->  ( ph  ->  E. x ps ) )

Proof of Theorem spimed
StepHypRef Expression
1 spimed.1 . . 3  |-  ( ch 
->  F/ x ph )
21nfrd 1513 . 2  |-  ( ch 
->  ( ph  ->  A. x ph ) )
3 a9e 1689 . . . 4  |-  E. x  x  =  y
4 spimed.2 . . . 4  |-  ( x  =  y  ->  ( ph  ->  ps ) )
53, 4eximii 1595 . . 3  |-  E. x
( ph  ->  ps )
6519.35i 1618 . 2  |-  ( A. x ph  ->  E. x ps )
72, 6syl6 33 1  |-  ( ch 
->  ( ph  ->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   F/wnf 1453   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  spime  1734
  Copyright terms: Public domain W3C validator