Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spime | Unicode version |
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) |
Ref | Expression |
---|---|
spime.1 | |
spime.2 |
Ref | Expression |
---|---|
spime |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spime.1 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | spime.2 | . . 3 | |
4 | 2, 3 | spimed 1733 | . 2 |
5 | 4 | mptru 1357 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wtru 1349 wnf 1453 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 |
This theorem is referenced by: spimev 1854 |
Copyright terms: Public domain | W3C validator |