| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spimeh | Unicode version | ||
| Description: Existential introduction, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by NM, 3-Feb-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spimeh.1 |
|
| spimeh.2 |
|
| Ref | Expression |
|---|---|
| spimeh |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1710 |
. 2
| |
| 2 | spimeh.1 |
. . 3
| |
| 3 | spimeh.2 |
. . . 4
| |
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 2, 4 | eximdh 1625 |
. 2
|
| 6 | 1, 5 | mpi 15 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |