ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimed GIF version

Theorem spimed 1738
Description: Deduction version of spime 1739. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.)
Hypotheses
Ref Expression
spimed.1 (𝜒 → Ⅎ𝑥𝜑)
spimed.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimed (𝜒 → (𝜑 → ∃𝑥𝜓))

Proof of Theorem spimed
StepHypRef Expression
1 spimed.1 . . 3 (𝜒 → Ⅎ𝑥𝜑)
21nfrd 1518 . 2 (𝜒 → (𝜑 → ∀𝑥𝜑))
3 a9e 1694 . . . 4 𝑥 𝑥 = 𝑦
4 spimed.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4eximii 1600 . . 3 𝑥(𝜑𝜓)
6519.35i 1623 . 2 (∀𝑥𝜑 → ∃𝑥𝜓)
72, 6syl6 33 1 (𝜒 → (𝜑 → ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351  wnf 1458  wex 1490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-4 1508  ax-i9 1528  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-nf 1459
This theorem is referenced by:  spime  1739
  Copyright terms: Public domain W3C validator