| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > spimed | GIF version | ||
| Description: Deduction version of spime 1755. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| spimed.1 | ⊢ (𝜒 → Ⅎ𝑥𝜑) | 
| spimed.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | 
| Ref | Expression | 
|---|---|
| spimed | ⊢ (𝜒 → (𝜑 → ∃𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spimed.1 | . . 3 ⊢ (𝜒 → Ⅎ𝑥𝜑) | |
| 2 | 1 | nfrd 1534 | . 2 ⊢ (𝜒 → (𝜑 → ∀𝑥𝜑)) | 
| 3 | a9e 1710 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 4 | spimed.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | eximii 1616 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) | 
| 6 | 5 | 19.35i 1639 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) | 
| 7 | 2, 6 | syl6 33 | 1 ⊢ (𝜒 → (𝜑 → ∃𝑥𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: spime 1755 | 
| Copyright terms: Public domain | W3C validator |