ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spvv Unicode version

Theorem spvv 1895
Description: Version of spv 1848 with a disjoint variable condition. (Contributed by BJ, 31-May-2019.)
Hypothesis
Ref Expression
spvv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spvv  |-  ( A. x ph  ->  ps )
Distinct variable groups:    x, y    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)

Proof of Theorem spvv
StepHypRef Expression
1 spvv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21spv 1848 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  chvarvv  1896
  Copyright terms: Public domain W3C validator