ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spv Unicode version

Theorem spv 1812
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
spv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spv  |-  ( A. x ph  ->  ps )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)

Proof of Theorem spv
StepHypRef Expression
1 spv.1 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21biimpd 143 . 2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
32spimv 1763 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1404  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495
This theorem depends on definitions:  df-bi 116  df-nf 1418
This theorem is referenced by:  chvarv  1885  ru  2875  nalset  4016  tfisi  4459  tfr1onlemsucfn  6189  tfr1onlemsucaccv  6190  tfr1onlembxssdm  6192  tfr1onlembfn  6193  tfr1onlemres  6198  tfri1dALT  6200  tfrcllemsucfn  6202  tfrcllemsucaccv  6203  tfrcllembxssdm  6205  tfrcllembfn  6206  tfrcllemres  6211  findcard2  6734  findcard2s  6735  bj-nalset  12776
  Copyright terms: Public domain W3C validator