ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spv Unicode version

Theorem spv 1871
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
spv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spv  |-  ( A. x ph  ->  ps )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)

Proof of Theorem spv
StepHypRef Expression
1 spv.1 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21biimpd 144 . 2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
32spimv 1822 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  spvv  1919  cbvalvw  1931  chvarv  1953  ru  2984  nalset  4159  tfisi  4619  tfr1onlemsucfn  6393  tfr1onlemsucaccv  6394  tfr1onlembxssdm  6396  tfr1onlembfn  6397  tfr1onlemres  6402  tfri1dALT  6404  tfrcllemsucfn  6406  tfrcllemsucaccv  6407  tfrcllembxssdm  6409  tfrcllembfn  6410  tfrcllemres  6415  findcard2  6945  findcard2s  6946  bj-nalset  15387
  Copyright terms: Public domain W3C validator