ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spv Unicode version

Theorem spv 1883
Description: Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
spv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spv  |-  ( A. x ph  ->  ps )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)

Proof of Theorem spv
StepHypRef Expression
1 spv.1 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21biimpd 144 . 2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
32spimv 1834 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484
This theorem is referenced by:  spvv  1931  cbvalvw  1943  chvarv  1965  ru  2997  nalset  4175  tfisi  4636  tfr1onlemsucfn  6428  tfr1onlemsucaccv  6429  tfr1onlembxssdm  6431  tfr1onlembfn  6432  tfr1onlemres  6437  tfri1dALT  6439  tfrcllemsucfn  6441  tfrcllemsucaccv  6442  tfrcllembxssdm  6444  tfrcllembfn  6445  tfrcllemres  6450  findcard2  6988  findcard2s  6989  bj-nalset  15868
  Copyright terms: Public domain W3C validator