ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spvv GIF version

Theorem spvv 1895
Description: Version of spv 1848 with a disjoint variable condition. (Contributed by BJ, 31-May-2019.)
Hypothesis
Ref Expression
spvv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spvv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spvv
StepHypRef Expression
1 spvv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
21spv 1848 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  chvarvv  1896
  Copyright terms: Public domain W3C validator