ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss4st Unicode version

Theorem dfss4st 3277
Description: Subclass defined in terms of class difference. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4st  |-  ( A. xSTAB  x  e.  A  ->  ( A  C_  B  <->  ( B  \  ( B  \  A
) )  =  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem dfss4st
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2176 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
21stbid 800 . . 3  |-  ( x  =  y  ->  (STAB  x  e.  A  <-> STAB  y  e.  A )
)
32cbvalv 1869 . 2  |-  ( A. xSTAB  x  e.  A  <->  A. ySTAB  y  e.  A )
4 nfa1 1504 . . . . 5  |-  F/ y A. ySTAB  y  e.  A
5 nfcv 2256 . . . . 5  |-  F/_ y
( B  \  ( B  \  A ) )
6 nfcv 2256 . . . . 5  |-  F/_ y
( B  i^i  A
)
7 eldif 3048 . . . . . . 7  |-  ( y  e.  ( B  \ 
( B  \  A
) )  <->  ( y  e.  B  /\  -.  y  e.  ( B  \  A
) ) )
8 elin 3227 . . . . . . . . . 10  |-  ( y  e.  ( B  i^i  A )  <->  ( y  e.  B  /\  y  e.  A ) )
9 abai 532 . . . . . . . . . 10  |-  ( ( y  e.  B  /\  y  e.  A )  <->  ( y  e.  B  /\  ( y  e.  B  ->  y  e.  A ) ) )
108, 9bitri 183 . . . . . . . . 9  |-  ( y  e.  ( B  i^i  A )  <->  ( y  e.  B  /\  ( y  e.  B  ->  y  e.  A ) ) )
11 imanst 856 . . . . . . . . . 10  |-  (STAB  y  e.  A  ->  ( (
y  e.  B  -> 
y  e.  A )  <->  -.  ( y  e.  B  /\  -.  y  e.  A
) ) )
1211anbi2d 457 . . . . . . . . 9  |-  (STAB  y  e.  A  ->  ( (
y  e.  B  /\  ( y  e.  B  ->  y  e.  A ) )  <->  ( y  e.  B  /\  -.  (
y  e.  B  /\  -.  y  e.  A
) ) ) )
1310, 12syl5bb 191 . . . . . . . 8  |-  (STAB  y  e.  A  ->  ( y  e.  ( B  i^i  A
)  <->  ( y  e.  B  /\  -.  (
y  e.  B  /\  -.  y  e.  A
) ) ) )
14 eldif 3048 . . . . . . . . . 10  |-  ( y  e.  ( B  \  A )  <->  ( y  e.  B  /\  -.  y  e.  A ) )
1514notbii 640 . . . . . . . . 9  |-  ( -.  y  e.  ( B 
\  A )  <->  -.  (
y  e.  B  /\  -.  y  e.  A
) )
1615anbi2i 450 . . . . . . . 8  |-  ( ( y  e.  B  /\  -.  y  e.  ( B  \  A ) )  <-> 
( y  e.  B  /\  -.  ( y  e.  B  /\  -.  y  e.  A ) ) )
1713, 16syl6rbbr 198 . . . . . . 7  |-  (STAB  y  e.  A  ->  ( (
y  e.  B  /\  -.  y  e.  ( B  \  A ) )  <-> 
y  e.  ( B  i^i  A ) ) )
187, 17syl5bb 191 . . . . . 6  |-  (STAB  y  e.  A  ->  ( y  e.  ( B  \  ( B  \  A ) )  <-> 
y  e.  ( B  i^i  A ) ) )
1918sps 1500 . . . . 5  |-  ( A. ySTAB  y  e.  A  ->  ( y  e.  ( B 
\  ( B  \  A ) )  <->  y  e.  ( B  i^i  A ) ) )
204, 5, 6, 19eqrd 3083 . . . 4  |-  ( A. ySTAB  y  e.  A  ->  ( B  \  ( B 
\  A ) )  =  ( B  i^i  A ) )
2120eqeq1d 2124 . . 3  |-  ( A. ySTAB  y  e.  A  ->  ( ( B  \  ( B  \  A ) )  =  A  <->  ( B  i^i  A )  =  A ) )
22 sseqin2 3263 . . 3  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )
2321, 22syl6rbbr 198 . 2  |-  ( A. ySTAB  y  e.  A  ->  ( A  C_  B  <->  ( B  \  ( B  \  A
) )  =  A ) )
243, 23sylbi 120 1  |-  ( A. xSTAB  x  e.  A  ->  ( A  C_  B  <->  ( B  \  ( B  \  A
) )  =  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  STAB wstab 798   A.wal 1312    = wceq 1314    e. wcel 1463    \ cdif 3036    i^i cin 3038    C_ wss 3039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-stab 799  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-dif 3041  df-in 3045  df-ss 3052
This theorem is referenced by:  sbthlemi3  6813
  Copyright terms: Public domain W3C validator