| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfss4st | Unicode version | ||
| Description: Subclass defined in terms of class difference. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| dfss4st | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1w 2257 | 
. . . 4
 | |
| 2 | 1 | stbid 833 | 
. . 3
 | 
| 3 | 2 | cbvalv 1932 | 
. 2
 | 
| 4 | sseqin2 3382 | 
. . 3
 | |
| 5 | nfa1 1555 | 
. . . . 5
 | |
| 6 | nfcv 2339 | 
. . . . 5
 | |
| 7 | nfcv 2339 | 
. . . . 5
 | |
| 8 | eldif 3166 | 
. . . . . . 7
 | |
| 9 | eldif 3166 | 
. . . . . . . . . 10
 | |
| 10 | 9 | notbii 669 | 
. . . . . . . . 9
 | 
| 11 | 10 | anbi2i 457 | 
. . . . . . . 8
 | 
| 12 | elin 3346 | 
. . . . . . . . . 10
 | |
| 13 | abai 560 | 
. . . . . . . . . 10
 | |
| 14 | 12, 13 | bitri 184 | 
. . . . . . . . 9
 | 
| 15 | imanst 889 | 
. . . . . . . . . 10
 | |
| 16 | 15 | anbi2d 464 | 
. . . . . . . . 9
 | 
| 17 | 14, 16 | bitrid 192 | 
. . . . . . . 8
 | 
| 18 | 11, 17 | bitr4id 199 | 
. . . . . . 7
 | 
| 19 | 8, 18 | bitrid 192 | 
. . . . . 6
 | 
| 20 | 19 | sps 1551 | 
. . . . 5
 | 
| 21 | 5, 6, 7, 20 | eqrd 3201 | 
. . . 4
 | 
| 22 | 21 | eqeq1d 2205 | 
. . 3
 | 
| 23 | 4, 22 | bitr4id 199 | 
. 2
 | 
| 24 | 3, 23 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: sbthlemi3 7025 | 
| Copyright terms: Public domain | W3C validator |