![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylbb2 | Unicode version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb2.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylbb2.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylbb2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb2.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylbb2.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpri 133 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sylbi 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: inffiexmid 6908 ssfirab 6935 ctssexmid 7150 pw1nel3 7232 fsumsplitsnun 11429 |
Copyright terms: Public domain | W3C validator |