Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssfirab | Unicode version |
Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.) |
Ref | Expression |
---|---|
ssfirab.a | |
ssfirab.dc | DECID |
Ref | Expression |
---|---|
ssfirab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 2718 | . . 3 | |
2 | 1 | eleq1d 2235 | . 2 |
3 | rabeq 2718 | . . 3 | |
4 | 3 | eleq1d 2235 | . 2 |
5 | rabeq 2718 | . . 3 | |
6 | 5 | eleq1d 2235 | . 2 |
7 | rabeq 2718 | . . 3 | |
8 | 7 | eleq1d 2235 | . 2 |
9 | rab0 3437 | . . . 4 | |
10 | 0fin 6850 | . . . 4 | |
11 | 9, 10 | eqeltri 2239 | . . 3 |
12 | 11 | a1i 9 | . 2 |
13 | rabun2 3401 | . . . . 5 | |
14 | sbsbc 2955 | . . . . . . . . . 10 | |
15 | vex 2729 | . . . . . . . . . . 11 | |
16 | ralsns 3614 | . . . . . . . . . . 11 | |
17 | 15, 16 | ax-mp 5 | . . . . . . . . . 10 |
18 | 14, 17 | bitr4i 186 | . . . . . . . . 9 |
19 | rabid2 2642 | . . . . . . . . 9 | |
20 | 18, 19 | sylbb2 137 | . . . . . . . 8 |
21 | 20 | adantl 275 | . . . . . . 7 |
22 | 21 | uneq2d 3276 | . . . . . 6 |
23 | simplr 520 | . . . . . . 7 | |
24 | 15 | a1i 9 | . . . . . . 7 |
25 | simprr 522 | . . . . . . . . . 10 | |
26 | 25 | ad2antrr 480 | . . . . . . . . 9 |
27 | 26 | eldifbd 3128 | . . . . . . . 8 |
28 | elrabi 2879 | . . . . . . . 8 | |
29 | 27, 28 | nsyl 618 | . . . . . . 7 |
30 | unsnfi 6884 | . . . . . . 7 | |
31 | 23, 24, 29, 30 | syl3anc 1228 | . . . . . 6 |
32 | 22, 31 | eqeltrrd 2244 | . . . . 5 |
33 | 13, 32 | eqeltrid 2253 | . . . 4 |
34 | ralsns 3614 | . . . . . . . . . . . 12 | |
35 | 15, 34 | ax-mp 5 | . . . . . . . . . . 11 |
36 | sbsbc 2955 | . . . . . . . . . . 11 | |
37 | sbn 1940 | . . . . . . . . . . 11 | |
38 | 35, 36, 37 | 3bitr2ri 208 | . . . . . . . . . 10 |
39 | rabeq0 3438 | . . . . . . . . . 10 | |
40 | 38, 39 | sylbb2 137 | . . . . . . . . 9 |
41 | 40 | adantl 275 | . . . . . . . 8 |
42 | 41 | uneq2d 3276 | . . . . . . 7 |
43 | un0 3442 | . . . . . . 7 | |
44 | 42, 43 | eqtrdi 2215 | . . . . . 6 |
45 | 13, 44 | syl5eq 2211 | . . . . 5 |
46 | simplr 520 | . . . . 5 | |
47 | 45, 46 | eqeltrd 2243 | . . . 4 |
48 | simplrr 526 | . . . . . . 7 | |
49 | 48 | eldifad 3127 | . . . . . 6 |
50 | ssfirab.dc | . . . . . . 7 DECID | |
51 | 50 | ad3antrrr 484 | . . . . . 6 DECID |
52 | nfs1v 1927 | . . . . . . . 8 | |
53 | 52 | nfdc 1647 | . . . . . . 7 DECID |
54 | sbequ12 1759 | . . . . . . . 8 | |
55 | 54 | dcbid 828 | . . . . . . 7 DECID DECID |
56 | 53, 55 | rspc 2824 | . . . . . 6 DECID DECID |
57 | 49, 51, 56 | sylc 62 | . . . . 5 DECID |
58 | exmiddc 826 | . . . . 5 DECID | |
59 | 57, 58 | syl 14 | . . . 4 |
60 | 33, 47, 59 | mpjaodan 788 | . . 3 |
61 | 60 | ex 114 | . 2 |
62 | ssfirab.a | . 2 | |
63 | 2, 4, 6, 8, 12, 61, 62 | findcard2sd 6858 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wceq 1343 wsb 1750 wcel 2136 wral 2444 crab 2448 cvv 2726 wsbc 2951 cdif 3113 cun 3114 wss 3116 c0 3409 csn 3576 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: ssfidc 6900 phivalfi 12144 hashdvds 12153 phiprmpw 12154 phimullem 12157 hashgcdeq 12171 |
Copyright terms: Public domain | W3C validator |