| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssfirab | Unicode version | ||
| Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.) |
| Ref | Expression |
|---|---|
| ssfirab.a |
|
| ssfirab.dc |
|
| Ref | Expression |
|---|---|
| ssfirab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 2764 |
. . 3
| |
| 2 | 1 | eleq1d 2274 |
. 2
|
| 3 | rabeq 2764 |
. . 3
| |
| 4 | 3 | eleq1d 2274 |
. 2
|
| 5 | rabeq 2764 |
. . 3
| |
| 6 | 5 | eleq1d 2274 |
. 2
|
| 7 | rabeq 2764 |
. . 3
| |
| 8 | 7 | eleq1d 2274 |
. 2
|
| 9 | rab0 3489 |
. . . 4
| |
| 10 | 0fin 6981 |
. . . 4
| |
| 11 | 9, 10 | eqeltri 2278 |
. . 3
|
| 12 | 11 | a1i 9 |
. 2
|
| 13 | rabun2 3452 |
. . . . 5
| |
| 14 | sbsbc 3002 |
. . . . . . . . . 10
| |
| 15 | vex 2775 |
. . . . . . . . . . 11
| |
| 16 | ralsns 3671 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
|
| 18 | 14, 17 | bitr4i 187 |
. . . . . . . . 9
|
| 19 | rabid2 2683 |
. . . . . . . . 9
| |
| 20 | 18, 19 | sylbb2 138 |
. . . . . . . 8
|
| 21 | 20 | adantl 277 |
. . . . . . 7
|
| 22 | 21 | uneq2d 3327 |
. . . . . 6
|
| 23 | simplr 528 |
. . . . . . 7
| |
| 24 | 15 | a1i 9 |
. . . . . . 7
|
| 25 | simprr 531 |
. . . . . . . . . 10
| |
| 26 | 25 | ad2antrr 488 |
. . . . . . . . 9
|
| 27 | 26 | eldifbd 3178 |
. . . . . . . 8
|
| 28 | elrabi 2926 |
. . . . . . . 8
| |
| 29 | 27, 28 | nsyl 629 |
. . . . . . 7
|
| 30 | unsnfi 7016 |
. . . . . . 7
| |
| 31 | 23, 24, 29, 30 | syl3anc 1250 |
. . . . . 6
|
| 32 | 22, 31 | eqeltrrd 2283 |
. . . . 5
|
| 33 | 13, 32 | eqeltrid 2292 |
. . . 4
|
| 34 | ralsns 3671 |
. . . . . . . . . . . 12
| |
| 35 | 15, 34 | ax-mp 5 |
. . . . . . . . . . 11
|
| 36 | sbsbc 3002 |
. . . . . . . . . . 11
| |
| 37 | sbn 1980 |
. . . . . . . . . . 11
| |
| 38 | 35, 36, 37 | 3bitr2ri 209 |
. . . . . . . . . 10
|
| 39 | rabeq0 3490 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | sylbb2 138 |
. . . . . . . . 9
|
| 41 | 40 | adantl 277 |
. . . . . . . 8
|
| 42 | 41 | uneq2d 3327 |
. . . . . . 7
|
| 43 | un0 3494 |
. . . . . . 7
| |
| 44 | 42, 43 | eqtrdi 2254 |
. . . . . 6
|
| 45 | 13, 44 | eqtrid 2250 |
. . . . 5
|
| 46 | simplr 528 |
. . . . 5
| |
| 47 | 45, 46 | eqeltrd 2282 |
. . . 4
|
| 48 | simplrr 536 |
. . . . . . 7
| |
| 49 | 48 | eldifad 3177 |
. . . . . 6
|
| 50 | ssfirab.dc |
. . . . . . 7
| |
| 51 | 50 | ad3antrrr 492 |
. . . . . 6
|
| 52 | nfs1v 1967 |
. . . . . . . 8
| |
| 53 | 52 | nfdc 1682 |
. . . . . . 7
|
| 54 | sbequ12 1794 |
. . . . . . . 8
| |
| 55 | 54 | dcbid 840 |
. . . . . . 7
|
| 56 | 53, 55 | rspc 2871 |
. . . . . 6
|
| 57 | 49, 51, 56 | sylc 62 |
. . . . 5
|
| 58 | exmiddc 838 |
. . . . 5
| |
| 59 | 57, 58 | syl 14 |
. . . 4
|
| 60 | 33, 47, 59 | mpjaodan 800 |
. . 3
|
| 61 | 60 | ex 115 |
. 2
|
| 62 | ssfirab.a |
. 2
| |
| 63 | 2, 4, 6, 8, 12, 61, 62 | findcard2sd 6989 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1o 6502 df-er 6620 df-en 6828 df-fin 6830 |
| This theorem is referenced by: ssfidc 7034 phivalfi 12534 hashdvds 12543 phiprmpw 12544 phimullem 12547 hashgcdeq 12562 lgsquadlemofi 15553 lgsquadlem1 15554 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |