ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfirab Unicode version

Theorem ssfirab 6927
Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
Hypotheses
Ref Expression
ssfirab.a  |-  ( ph  ->  A  e.  Fin )
ssfirab.dc  |-  ( ph  ->  A. x  e.  A DECID  ps )
Assertion
Ref Expression
ssfirab  |-  ( ph  ->  { x  e.  A  |  ps }  e.  Fin )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem ssfirab
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2729 . . 3  |-  ( w  =  (/)  ->  { x  e.  w  |  ps }  =  { x  e.  (/)  |  ps }
)
21eleq1d 2246 . 2  |-  ( w  =  (/)  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  {
x  e.  (/)  |  ps }  e.  Fin )
)
3 rabeq 2729 . . 3  |-  ( w  =  y  ->  { x  e.  w  |  ps }  =  { x  e.  y  |  ps } )
43eleq1d 2246 . 2  |-  ( w  =  y  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  {
x  e.  y  |  ps }  e.  Fin ) )
5 rabeq 2729 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  { x  e.  w  |  ps }  =  { x  e.  ( y  u.  { z } )  |  ps } )
65eleq1d 2246 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  { x  e.  ( y  u.  {
z } )  |  ps }  e.  Fin ) )
7 rabeq 2729 . . 3  |-  ( w  =  A  ->  { x  e.  w  |  ps }  =  { x  e.  A  |  ps } )
87eleq1d 2246 . 2  |-  ( w  =  A  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  {
x  e.  A  |  ps }  e.  Fin )
)
9 rab0 3451 . . . 4  |-  { x  e.  (/)  |  ps }  =  (/)
10 0fin 6878 . . . 4  |-  (/)  e.  Fin
119, 10eqeltri 2250 . . 3  |-  { x  e.  (/)  |  ps }  e.  Fin
1211a1i 9 . 2  |-  ( ph  ->  { x  e.  (/)  |  ps }  e.  Fin )
13 rabun2 3414 . . . . 5  |-  { x  e.  ( y  u.  {
z } )  |  ps }  =  ( { x  e.  y  |  ps }  u.  { x  e.  { z }  |  ps }
)
14 sbsbc 2966 . . . . . . . . . 10  |-  ( [ z  /  x ] ps 
<-> 
[. z  /  x ]. ps )
15 vex 2740 . . . . . . . . . . 11  |-  z  e. 
_V
16 ralsns 3629 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( A. x  e.  { z } ps  <->  [. z  /  x ]. ps ) )
1715, 16ax-mp 5 . . . . . . . . . 10  |-  ( A. x  e.  { z } ps  <->  [. z  /  x ]. ps )
1814, 17bitr4i 187 . . . . . . . . 9  |-  ( [ z  /  x ] ps 
<-> 
A. x  e.  {
z } ps )
19 rabid2 2653 . . . . . . . . 9  |-  ( { z }  =  {
x  e.  { z }  |  ps }  <->  A. x  e.  { z } ps )
2018, 19sylbb2 138 . . . . . . . 8  |-  ( [ z  /  x ] ps  ->  { z }  =  { x  e. 
{ z }  |  ps } )
2120adantl 277 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  { z }  =  { x  e.  { z }  |  ps } )
2221uneq2d 3289 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  ( { x  e.  y  |  ps }  u.  {
z } )  =  ( { x  e.  y  |  ps }  u.  { x  e.  {
z }  |  ps } ) )
23 simplr 528 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  { x  e.  y  |  ps }  e.  Fin )
2415a1i 9 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  z  e.  _V )
25 simprr 531 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
2625ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  z  e.  ( A  \  y
) )
2726eldifbd 3141 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  -.  z  e.  y )
28 elrabi 2890 . . . . . . . 8  |-  ( z  e.  { x  e.  y  |  ps }  ->  z  e.  y )
2927, 28nsyl 628 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  -.  z  e.  { x  e.  y  |  ps } )
30 unsnfi 6912 . . . . . . 7  |-  ( ( { x  e.  y  |  ps }  e.  Fin  /\  z  e.  _V  /\ 
-.  z  e.  {
x  e.  y  |  ps } )  -> 
( { x  e.  y  |  ps }  u.  { z } )  e.  Fin )
3123, 24, 29, 30syl3anc 1238 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  ( { x  e.  y  |  ps }  u.  {
z } )  e. 
Fin )
3222, 31eqeltrrd 2255 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  ( { x  e.  y  |  ps }  u.  {
x  e.  { z }  |  ps }
)  e.  Fin )
3313, 32eqeltrid 2264 . . . 4  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  { x  e.  ( y  u.  {
z } )  |  ps }  e.  Fin )
34 ralsns 3629 . . . . . . . . . . . 12  |-  ( z  e.  _V  ->  ( A. x  e.  { z }  -.  ps  <->  [. z  /  x ].  -.  ps )
)
3515, 34ax-mp 5 . . . . . . . . . . 11  |-  ( A. x  e.  { z }  -.  ps  <->  [. z  /  x ].  -.  ps )
36 sbsbc 2966 . . . . . . . . . . 11  |-  ( [ z  /  x ]  -.  ps  <->  [. z  /  x ].  -.  ps )
37 sbn 1952 . . . . . . . . . . 11  |-  ( [ z  /  x ]  -.  ps  <->  -.  [ z  /  x ] ps )
3835, 36, 373bitr2ri 209 . . . . . . . . . 10  |-  ( -. 
[ z  /  x ] ps  <->  A. x  e.  {
z }  -.  ps )
39 rabeq0 3452 . . . . . . . . . 10  |-  ( { x  e.  { z }  |  ps }  =  (/)  <->  A. x  e.  {
z }  -.  ps )
4038, 39sylbb2 138 . . . . . . . . 9  |-  ( -. 
[ z  /  x ] ps  ->  { x  e.  { z }  |  ps }  =  (/) )
4140adantl 277 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  { z }  |  ps }  =  (/) )
4241uneq2d 3289 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  -> 
( { x  e.  y  |  ps }  u.  { x  e.  {
z }  |  ps } )  =  ( { x  e.  y  |  ps }  u.  (/) ) )
43 un0 3456 . . . . . . 7  |-  ( { x  e.  y  |  ps }  u.  (/) )  =  { x  e.  y  |  ps }
4442, 43eqtrdi 2226 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  -> 
( { x  e.  y  |  ps }  u.  { x  e.  {
z }  |  ps } )  =  {
x  e.  y  |  ps } )
4513, 44eqtrid 2222 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  (
y  u.  { z } )  |  ps }  =  { x  e.  y  |  ps } )
46 simplr 528 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  y  |  ps }  e.  Fin )
4745, 46eqeltrd 2254 . . . 4  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  (
y  u.  { z } )  |  ps }  e.  Fin )
48 simplrr 536 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  z  e.  ( A 
\  y ) )
4948eldifad 3140 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  z  e.  A )
50 ssfirab.dc . . . . . . 7  |-  ( ph  ->  A. x  e.  A DECID  ps )
5150ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  A. x  e.  A DECID  ps )
52 nfs1v 1939 . . . . . . . 8  |-  F/ x [ z  /  x ] ps
5352nfdc 1659 . . . . . . 7  |-  F/ xDECID  [ z  /  x ] ps
54 sbequ12 1771 . . . . . . . 8  |-  ( x  =  z  ->  ( ps 
<->  [ z  /  x ] ps ) )
5554dcbid 838 . . . . . . 7  |-  ( x  =  z  ->  (DECID  ps  <-> DECID  [ z  /  x ] ps ) )
5653, 55rspc 2835 . . . . . 6  |-  ( z  e.  A  ->  ( A. x  e.  A DECID  ps  -> DECID  [ z  /  x ] ps ) )
5749, 51, 56sylc 62 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  -> DECID  [ z  /  x ] ps )
58 exmiddc 836 . . . . 5  |-  (DECID  [ z  /  x ] ps  ->  ( [ z  /  x ] ps  \/  -.  [ z  /  x ] ps ) )
5957, 58syl 14 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  ( [ z  /  x ] ps  \/  -.  [ z  /  x ] ps ) )
6033, 47, 59mpjaodan 798 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  { x  e.  ( y  u.  { z } )  |  ps }  e.  Fin )
6160ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { x  e.  y  |  ps }  e.  Fin  ->  { x  e.  ( y  u.  {
z } )  |  ps }  e.  Fin ) )
62 ssfirab.a . 2  |-  ( ph  ->  A  e.  Fin )
632, 4, 6, 8, 12, 61, 62findcard2sd 6886 1  |-  ( ph  ->  { x  e.  A  |  ps }  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353   [wsb 1762    e. wcel 2148   A.wral 2455   {crab 2459   _Vcvv 2737   [.wsbc 2962    \ cdif 3126    u. cun 3127    C_ wss 3129   (/)c0 3422   {csn 3591   Fincfn 6734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1o 6411  df-er 6529  df-en 6735  df-fin 6737
This theorem is referenced by:  ssfidc  6928  phivalfi  12195  hashdvds  12204  phiprmpw  12205  phimullem  12208  hashgcdeq  12222
  Copyright terms: Public domain W3C validator