| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssfirab | Unicode version | ||
| Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.) |
| Ref | Expression |
|---|---|
| ssfirab.a |
|
| ssfirab.dc |
|
| Ref | Expression |
|---|---|
| ssfirab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 2763 |
. . 3
| |
| 2 | 1 | eleq1d 2273 |
. 2
|
| 3 | rabeq 2763 |
. . 3
| |
| 4 | 3 | eleq1d 2273 |
. 2
|
| 5 | rabeq 2763 |
. . 3
| |
| 6 | 5 | eleq1d 2273 |
. 2
|
| 7 | rabeq 2763 |
. . 3
| |
| 8 | 7 | eleq1d 2273 |
. 2
|
| 9 | rab0 3488 |
. . . 4
| |
| 10 | 0fin 6980 |
. . . 4
| |
| 11 | 9, 10 | eqeltri 2277 |
. . 3
|
| 12 | 11 | a1i 9 |
. 2
|
| 13 | rabun2 3451 |
. . . . 5
| |
| 14 | sbsbc 3001 |
. . . . . . . . . 10
| |
| 15 | vex 2774 |
. . . . . . . . . . 11
| |
| 16 | ralsns 3670 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
|
| 18 | 14, 17 | bitr4i 187 |
. . . . . . . . 9
|
| 19 | rabid2 2682 |
. . . . . . . . 9
| |
| 20 | 18, 19 | sylbb2 138 |
. . . . . . . 8
|
| 21 | 20 | adantl 277 |
. . . . . . 7
|
| 22 | 21 | uneq2d 3326 |
. . . . . 6
|
| 23 | simplr 528 |
. . . . . . 7
| |
| 24 | 15 | a1i 9 |
. . . . . . 7
|
| 25 | simprr 531 |
. . . . . . . . . 10
| |
| 26 | 25 | ad2antrr 488 |
. . . . . . . . 9
|
| 27 | 26 | eldifbd 3177 |
. . . . . . . 8
|
| 28 | elrabi 2925 |
. . . . . . . 8
| |
| 29 | 27, 28 | nsyl 629 |
. . . . . . 7
|
| 30 | unsnfi 7015 |
. . . . . . 7
| |
| 31 | 23, 24, 29, 30 | syl3anc 1249 |
. . . . . 6
|
| 32 | 22, 31 | eqeltrrd 2282 |
. . . . 5
|
| 33 | 13, 32 | eqeltrid 2291 |
. . . 4
|
| 34 | ralsns 3670 |
. . . . . . . . . . . 12
| |
| 35 | 15, 34 | ax-mp 5 |
. . . . . . . . . . 11
|
| 36 | sbsbc 3001 |
. . . . . . . . . . 11
| |
| 37 | sbn 1979 |
. . . . . . . . . . 11
| |
| 38 | 35, 36, 37 | 3bitr2ri 209 |
. . . . . . . . . 10
|
| 39 | rabeq0 3489 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | sylbb2 138 |
. . . . . . . . 9
|
| 41 | 40 | adantl 277 |
. . . . . . . 8
|
| 42 | 41 | uneq2d 3326 |
. . . . . . 7
|
| 43 | un0 3493 |
. . . . . . 7
| |
| 44 | 42, 43 | eqtrdi 2253 |
. . . . . 6
|
| 45 | 13, 44 | eqtrid 2249 |
. . . . 5
|
| 46 | simplr 528 |
. . . . 5
| |
| 47 | 45, 46 | eqeltrd 2281 |
. . . 4
|
| 48 | simplrr 536 |
. . . . . . 7
| |
| 49 | 48 | eldifad 3176 |
. . . . . 6
|
| 50 | ssfirab.dc |
. . . . . . 7
| |
| 51 | 50 | ad3antrrr 492 |
. . . . . 6
|
| 52 | nfs1v 1966 |
. . . . . . . 8
| |
| 53 | 52 | nfdc 1681 |
. . . . . . 7
|
| 54 | sbequ12 1793 |
. . . . . . . 8
| |
| 55 | 54 | dcbid 839 |
. . . . . . 7
|
| 56 | 53, 55 | rspc 2870 |
. . . . . 6
|
| 57 | 49, 51, 56 | sylc 62 |
. . . . 5
|
| 58 | exmiddc 837 |
. . . . 5
| |
| 59 | 57, 58 | syl 14 |
. . . 4
|
| 60 | 33, 47, 59 | mpjaodan 799 |
. . 3
|
| 61 | 60 | ex 115 |
. 2
|
| 62 | ssfirab.a |
. 2
| |
| 63 | 2, 4, 6, 8, 12, 61, 62 | findcard2sd 6988 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1o 6501 df-er 6619 df-en 6827 df-fin 6829 |
| This theorem is referenced by: ssfidc 7033 phivalfi 12505 hashdvds 12514 phiprmpw 12515 phimullem 12518 hashgcdeq 12533 lgsquadlemofi 15524 lgsquadlem1 15525 lgsquadlem2 15526 |
| Copyright terms: Public domain | W3C validator |