ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfirab Unicode version

Theorem ssfirab 7094
Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
Hypotheses
Ref Expression
ssfirab.a  |-  ( ph  ->  A  e.  Fin )
ssfirab.dc  |-  ( ph  ->  A. x  e.  A DECID  ps )
Assertion
Ref Expression
ssfirab  |-  ( ph  ->  { x  e.  A  |  ps }  e.  Fin )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem ssfirab
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2791 . . 3  |-  ( w  =  (/)  ->  { x  e.  w  |  ps }  =  { x  e.  (/)  |  ps }
)
21eleq1d 2298 . 2  |-  ( w  =  (/)  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  {
x  e.  (/)  |  ps }  e.  Fin )
)
3 rabeq 2791 . . 3  |-  ( w  =  y  ->  { x  e.  w  |  ps }  =  { x  e.  y  |  ps } )
43eleq1d 2298 . 2  |-  ( w  =  y  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  {
x  e.  y  |  ps }  e.  Fin ) )
5 rabeq 2791 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  { x  e.  w  |  ps }  =  { x  e.  ( y  u.  { z } )  |  ps } )
65eleq1d 2298 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  { x  e.  ( y  u.  {
z } )  |  ps }  e.  Fin ) )
7 rabeq 2791 . . 3  |-  ( w  =  A  ->  { x  e.  w  |  ps }  =  { x  e.  A  |  ps } )
87eleq1d 2298 . 2  |-  ( w  =  A  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  {
x  e.  A  |  ps }  e.  Fin )
)
9 rab0 3520 . . . 4  |-  { x  e.  (/)  |  ps }  =  (/)
10 0fin 7042 . . . 4  |-  (/)  e.  Fin
119, 10eqeltri 2302 . . 3  |-  { x  e.  (/)  |  ps }  e.  Fin
1211a1i 9 . 2  |-  ( ph  ->  { x  e.  (/)  |  ps }  e.  Fin )
13 rabun2 3483 . . . . 5  |-  { x  e.  ( y  u.  {
z } )  |  ps }  =  ( { x  e.  y  |  ps }  u.  { x  e.  { z }  |  ps }
)
14 sbsbc 3032 . . . . . . . . . 10  |-  ( [ z  /  x ] ps 
<-> 
[. z  /  x ]. ps )
15 vex 2802 . . . . . . . . . . 11  |-  z  e. 
_V
16 ralsns 3704 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( A. x  e.  { z } ps  <->  [. z  /  x ]. ps ) )
1715, 16ax-mp 5 . . . . . . . . . 10  |-  ( A. x  e.  { z } ps  <->  [. z  /  x ]. ps )
1814, 17bitr4i 187 . . . . . . . . 9  |-  ( [ z  /  x ] ps 
<-> 
A. x  e.  {
z } ps )
19 rabid2 2708 . . . . . . . . 9  |-  ( { z }  =  {
x  e.  { z }  |  ps }  <->  A. x  e.  { z } ps )
2018, 19sylbb2 138 . . . . . . . 8  |-  ( [ z  /  x ] ps  ->  { z }  =  { x  e. 
{ z }  |  ps } )
2120adantl 277 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  { z }  =  { x  e.  { z }  |  ps } )
2221uneq2d 3358 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  ( { x  e.  y  |  ps }  u.  {
z } )  =  ( { x  e.  y  |  ps }  u.  { x  e.  {
z }  |  ps } ) )
23 simplr 528 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  { x  e.  y  |  ps }  e.  Fin )
2415a1i 9 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  z  e.  _V )
25 simprr 531 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
2625ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  z  e.  ( A  \  y
) )
2726eldifbd 3209 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  -.  z  e.  y )
28 elrabi 2956 . . . . . . . 8  |-  ( z  e.  { x  e.  y  |  ps }  ->  z  e.  y )
2927, 28nsyl 631 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  -.  z  e.  { x  e.  y  |  ps } )
30 unsnfi 7077 . . . . . . 7  |-  ( ( { x  e.  y  |  ps }  e.  Fin  /\  z  e.  _V  /\ 
-.  z  e.  {
x  e.  y  |  ps } )  -> 
( { x  e.  y  |  ps }  u.  { z } )  e.  Fin )
3123, 24, 29, 30syl3anc 1271 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  ( { x  e.  y  |  ps }  u.  {
z } )  e. 
Fin )
3222, 31eqeltrrd 2307 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  ( { x  e.  y  |  ps }  u.  {
x  e.  { z }  |  ps }
)  e.  Fin )
3313, 32eqeltrid 2316 . . . 4  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  { x  e.  ( y  u.  {
z } )  |  ps }  e.  Fin )
34 ralsns 3704 . . . . . . . . . . . 12  |-  ( z  e.  _V  ->  ( A. x  e.  { z }  -.  ps  <->  [. z  /  x ].  -.  ps )
)
3515, 34ax-mp 5 . . . . . . . . . . 11  |-  ( A. x  e.  { z }  -.  ps  <->  [. z  /  x ].  -.  ps )
36 sbsbc 3032 . . . . . . . . . . 11  |-  ( [ z  /  x ]  -.  ps  <->  [. z  /  x ].  -.  ps )
37 sbn 2003 . . . . . . . . . . 11  |-  ( [ z  /  x ]  -.  ps  <->  -.  [ z  /  x ] ps )
3835, 36, 373bitr2ri 209 . . . . . . . . . 10  |-  ( -. 
[ z  /  x ] ps  <->  A. x  e.  {
z }  -.  ps )
39 rabeq0 3521 . . . . . . . . . 10  |-  ( { x  e.  { z }  |  ps }  =  (/)  <->  A. x  e.  {
z }  -.  ps )
4038, 39sylbb2 138 . . . . . . . . 9  |-  ( -. 
[ z  /  x ] ps  ->  { x  e.  { z }  |  ps }  =  (/) )
4140adantl 277 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  { z }  |  ps }  =  (/) )
4241uneq2d 3358 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  -> 
( { x  e.  y  |  ps }  u.  { x  e.  {
z }  |  ps } )  =  ( { x  e.  y  |  ps }  u.  (/) ) )
43 un0 3525 . . . . . . 7  |-  ( { x  e.  y  |  ps }  u.  (/) )  =  { x  e.  y  |  ps }
4442, 43eqtrdi 2278 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  -> 
( { x  e.  y  |  ps }  u.  { x  e.  {
z }  |  ps } )  =  {
x  e.  y  |  ps } )
4513, 44eqtrid 2274 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  (
y  u.  { z } )  |  ps }  =  { x  e.  y  |  ps } )
46 simplr 528 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  y  |  ps }  e.  Fin )
4745, 46eqeltrd 2306 . . . 4  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  (
y  u.  { z } )  |  ps }  e.  Fin )
48 simplrr 536 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  z  e.  ( A 
\  y ) )
4948eldifad 3208 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  z  e.  A )
50 ssfirab.dc . . . . . . 7  |-  ( ph  ->  A. x  e.  A DECID  ps )
5150ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  A. x  e.  A DECID  ps )
52 nfs1v 1990 . . . . . . . 8  |-  F/ x [ z  /  x ] ps
5352nfdc 1705 . . . . . . 7  |-  F/ xDECID  [ z  /  x ] ps
54 sbequ12 1817 . . . . . . . 8  |-  ( x  =  z  ->  ( ps 
<->  [ z  /  x ] ps ) )
5554dcbid 843 . . . . . . 7  |-  ( x  =  z  ->  (DECID  ps  <-> DECID  [ z  /  x ] ps ) )
5653, 55rspc 2901 . . . . . 6  |-  ( z  e.  A  ->  ( A. x  e.  A DECID  ps  -> DECID  [ z  /  x ] ps ) )
5749, 51, 56sylc 62 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  -> DECID  [ z  /  x ] ps )
58 exmiddc 841 . . . . 5  |-  (DECID  [ z  /  x ] ps  ->  ( [ z  /  x ] ps  \/  -.  [ z  /  x ] ps ) )
5957, 58syl 14 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  ( [ z  /  x ] ps  \/  -.  [ z  /  x ] ps ) )
6033, 47, 59mpjaodan 803 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  { x  e.  ( y  u.  { z } )  |  ps }  e.  Fin )
6160ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { x  e.  y  |  ps }  e.  Fin  ->  { x  e.  ( y  u.  {
z } )  |  ps }  e.  Fin ) )
62 ssfirab.a . 2  |-  ( ph  ->  A  e.  Fin )
632, 4, 6, 8, 12, 61, 62findcard2sd 7050 1  |-  ( ph  ->  { x  e.  A  |  ps }  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395   [wsb 1808    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799   [.wsbc 3028    \ cdif 3194    u. cun 3195    C_ wss 3197   (/)c0 3491   {csn 3666   Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by:  ssfidc  7095  phivalfi  12729  hashdvds  12738  phiprmpw  12739  phimullem  12742  hashgcdeq  12757  lgsquadlemofi  15749  lgsquadlem1  15750  lgsquadlem2  15751
  Copyright terms: Public domain W3C validator