Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssfirab | Unicode version |
Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.) |
Ref | Expression |
---|---|
ssfirab.a | |
ssfirab.dc | DECID |
Ref | Expression |
---|---|
ssfirab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 2704 | . . 3 | |
2 | 1 | eleq1d 2226 | . 2 |
3 | rabeq 2704 | . . 3 | |
4 | 3 | eleq1d 2226 | . 2 |
5 | rabeq 2704 | . . 3 | |
6 | 5 | eleq1d 2226 | . 2 |
7 | rabeq 2704 | . . 3 | |
8 | 7 | eleq1d 2226 | . 2 |
9 | rab0 3422 | . . . 4 | |
10 | 0fin 6826 | . . . 4 | |
11 | 9, 10 | eqeltri 2230 | . . 3 |
12 | 11 | a1i 9 | . 2 |
13 | rabun2 3386 | . . . . 5 | |
14 | sbsbc 2941 | . . . . . . . . . 10 | |
15 | vex 2715 | . . . . . . . . . . 11 | |
16 | ralsns 3597 | . . . . . . . . . . 11 | |
17 | 15, 16 | ax-mp 5 | . . . . . . . . . 10 |
18 | 14, 17 | bitr4i 186 | . . . . . . . . 9 |
19 | rabid2 2633 | . . . . . . . . 9 | |
20 | 18, 19 | sylbb2 137 | . . . . . . . 8 |
21 | 20 | adantl 275 | . . . . . . 7 |
22 | 21 | uneq2d 3261 | . . . . . 6 |
23 | simplr 520 | . . . . . . 7 | |
24 | 15 | a1i 9 | . . . . . . 7 |
25 | simprr 522 | . . . . . . . . . 10 | |
26 | 25 | ad2antrr 480 | . . . . . . . . 9 |
27 | 26 | eldifbd 3114 | . . . . . . . 8 |
28 | elrabi 2865 | . . . . . . . 8 | |
29 | 27, 28 | nsyl 618 | . . . . . . 7 |
30 | unsnfi 6860 | . . . . . . 7 | |
31 | 23, 24, 29, 30 | syl3anc 1220 | . . . . . 6 |
32 | 22, 31 | eqeltrrd 2235 | . . . . 5 |
33 | 13, 32 | eqeltrid 2244 | . . . 4 |
34 | ralsns 3597 | . . . . . . . . . . . 12 | |
35 | 15, 34 | ax-mp 5 | . . . . . . . . . . 11 |
36 | sbsbc 2941 | . . . . . . . . . . 11 | |
37 | sbn 1932 | . . . . . . . . . . 11 | |
38 | 35, 36, 37 | 3bitr2ri 208 | . . . . . . . . . 10 |
39 | rabeq0 3423 | . . . . . . . . . 10 | |
40 | 38, 39 | sylbb2 137 | . . . . . . . . 9 |
41 | 40 | adantl 275 | . . . . . . . 8 |
42 | 41 | uneq2d 3261 | . . . . . . 7 |
43 | un0 3427 | . . . . . . 7 | |
44 | 42, 43 | eqtrdi 2206 | . . . . . 6 |
45 | 13, 44 | syl5eq 2202 | . . . . 5 |
46 | simplr 520 | . . . . 5 | |
47 | 45, 46 | eqeltrd 2234 | . . . 4 |
48 | simplrr 526 | . . . . . . 7 | |
49 | 48 | eldifad 3113 | . . . . . 6 |
50 | ssfirab.dc | . . . . . . 7 DECID | |
51 | 50 | ad3antrrr 484 | . . . . . 6 DECID |
52 | nfs1v 1919 | . . . . . . . 8 | |
53 | 52 | nfdc 1639 | . . . . . . 7 DECID |
54 | sbequ12 1751 | . . . . . . . 8 | |
55 | 54 | dcbid 824 | . . . . . . 7 DECID DECID |
56 | 53, 55 | rspc 2810 | . . . . . 6 DECID DECID |
57 | 49, 51, 56 | sylc 62 | . . . . 5 DECID |
58 | exmiddc 822 | . . . . 5 DECID | |
59 | 57, 58 | syl 14 | . . . 4 |
60 | 33, 47, 59 | mpjaodan 788 | . . 3 |
61 | 60 | ex 114 | . 2 |
62 | ssfirab.a | . 2 | |
63 | 2, 4, 6, 8, 12, 61, 62 | findcard2sd 6834 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 820 wceq 1335 wsb 1742 wcel 2128 wral 2435 crab 2439 cvv 2712 wsbc 2937 cdif 3099 cun 3100 wss 3102 c0 3394 csn 3560 cfn 6682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-1o 6360 df-er 6477 df-en 6683 df-fin 6685 |
This theorem is referenced by: ssfidc 6876 phivalfi 12075 hashdvds 12084 phiprmpw 12085 phimullem 12088 hashgcdeq 12102 |
Copyright terms: Public domain | W3C validator |