| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssfirab | Unicode version | ||
| Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.) |
| Ref | Expression |
|---|---|
| ssfirab.a |
|
| ssfirab.dc |
|
| Ref | Expression |
|---|---|
| ssfirab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 2765 |
. . 3
| |
| 2 | 1 | eleq1d 2275 |
. 2
|
| 3 | rabeq 2765 |
. . 3
| |
| 4 | 3 | eleq1d 2275 |
. 2
|
| 5 | rabeq 2765 |
. . 3
| |
| 6 | 5 | eleq1d 2275 |
. 2
|
| 7 | rabeq 2765 |
. . 3
| |
| 8 | 7 | eleq1d 2275 |
. 2
|
| 9 | rab0 3493 |
. . . 4
| |
| 10 | 0fin 7002 |
. . . 4
| |
| 11 | 9, 10 | eqeltri 2279 |
. . 3
|
| 12 | 11 | a1i 9 |
. 2
|
| 13 | rabun2 3456 |
. . . . 5
| |
| 14 | sbsbc 3006 |
. . . . . . . . . 10
| |
| 15 | vex 2776 |
. . . . . . . . . . 11
| |
| 16 | ralsns 3676 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
|
| 18 | 14, 17 | bitr4i 187 |
. . . . . . . . 9
|
| 19 | rabid2 2684 |
. . . . . . . . 9
| |
| 20 | 18, 19 | sylbb2 138 |
. . . . . . . 8
|
| 21 | 20 | adantl 277 |
. . . . . . 7
|
| 22 | 21 | uneq2d 3331 |
. . . . . 6
|
| 23 | simplr 528 |
. . . . . . 7
| |
| 24 | 15 | a1i 9 |
. . . . . . 7
|
| 25 | simprr 531 |
. . . . . . . . . 10
| |
| 26 | 25 | ad2antrr 488 |
. . . . . . . . 9
|
| 27 | 26 | eldifbd 3182 |
. . . . . . . 8
|
| 28 | elrabi 2930 |
. . . . . . . 8
| |
| 29 | 27, 28 | nsyl 629 |
. . . . . . 7
|
| 30 | unsnfi 7037 |
. . . . . . 7
| |
| 31 | 23, 24, 29, 30 | syl3anc 1250 |
. . . . . 6
|
| 32 | 22, 31 | eqeltrrd 2284 |
. . . . 5
|
| 33 | 13, 32 | eqeltrid 2293 |
. . . 4
|
| 34 | ralsns 3676 |
. . . . . . . . . . . 12
| |
| 35 | 15, 34 | ax-mp 5 |
. . . . . . . . . . 11
|
| 36 | sbsbc 3006 |
. . . . . . . . . . 11
| |
| 37 | sbn 1981 |
. . . . . . . . . . 11
| |
| 38 | 35, 36, 37 | 3bitr2ri 209 |
. . . . . . . . . 10
|
| 39 | rabeq0 3494 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | sylbb2 138 |
. . . . . . . . 9
|
| 41 | 40 | adantl 277 |
. . . . . . . 8
|
| 42 | 41 | uneq2d 3331 |
. . . . . . 7
|
| 43 | un0 3498 |
. . . . . . 7
| |
| 44 | 42, 43 | eqtrdi 2255 |
. . . . . 6
|
| 45 | 13, 44 | eqtrid 2251 |
. . . . 5
|
| 46 | simplr 528 |
. . . . 5
| |
| 47 | 45, 46 | eqeltrd 2283 |
. . . 4
|
| 48 | simplrr 536 |
. . . . . . 7
| |
| 49 | 48 | eldifad 3181 |
. . . . . 6
|
| 50 | ssfirab.dc |
. . . . . . 7
| |
| 51 | 50 | ad3antrrr 492 |
. . . . . 6
|
| 52 | nfs1v 1968 |
. . . . . . . 8
| |
| 53 | 52 | nfdc 1683 |
. . . . . . 7
|
| 54 | sbequ12 1795 |
. . . . . . . 8
| |
| 55 | 54 | dcbid 840 |
. . . . . . 7
|
| 56 | 53, 55 | rspc 2875 |
. . . . . 6
|
| 57 | 49, 51, 56 | sylc 62 |
. . . . 5
|
| 58 | exmiddc 838 |
. . . . 5
| |
| 59 | 57, 58 | syl 14 |
. . . 4
|
| 60 | 33, 47, 59 | mpjaodan 800 |
. . 3
|
| 61 | 60 | ex 115 |
. 2
|
| 62 | ssfirab.a |
. 2
| |
| 63 | 2, 4, 6, 8, 12, 61, 62 | findcard2sd 7010 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1o 6520 df-er 6638 df-en 6846 df-fin 6848 |
| This theorem is referenced by: ssfidc 7055 phivalfi 12619 hashdvds 12628 phiprmpw 12629 phimullem 12632 hashgcdeq 12647 lgsquadlemofi 15638 lgsquadlem1 15639 lgsquadlem2 15640 |
| Copyright terms: Public domain | W3C validator |