ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffiexmid Unicode version

Theorem inffiexmid 6753
Description: If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
Hypothesis
Ref Expression
inffiexmid.1  |-  ( x  e.  Fin  \/  om  ~<_  x )
Assertion
Ref Expression
inffiexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem inffiexmid
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4467 . . . . 5  |-  om  e.  _V
21rabex 4032 . . . 4  |-  { y  e.  om  |  ph }  e.  _V
3 eleq1 2177 . . . . 5  |-  ( x  =  { y  e. 
om  |  ph }  ->  ( x  e.  Fin  <->  {
y  e.  om  |  ph }  e.  Fin )
)
4 breq2 3899 . . . . 5  |-  ( x  =  { y  e. 
om  |  ph }  ->  ( om  ~<_  x  <->  om  ~<_  { y  e.  om  |  ph } ) )
53, 4orbi12d 765 . . . 4  |-  ( x  =  { y  e. 
om  |  ph }  ->  ( ( x  e. 
Fin  \/  om  ~<_  x )  <-> 
( { y  e. 
om  |  ph }  e.  Fin  \/  om  ~<_  { y  e.  om  |  ph } ) ) )
6 inffiexmid.1 . . . 4  |-  ( x  e.  Fin  \/  om  ~<_  x )
72, 5, 6vtocl 2711 . . 3  |-  ( { y  e.  om  |  ph }  e.  Fin  \/  om  ~<_  { y  e.  om  |  ph } )
8 ominf 6743 . . . . . 6  |-  -.  om  e.  Fin
9 peano1 4468 . . . . . . . . . 10  |-  (/)  e.  om
10 elex2 2673 . . . . . . . . . 10  |-  ( (/)  e.  om  ->  E. w  w  e.  om )
119, 10ax-mp 7 . . . . . . . . 9  |-  E. w  w  e.  om
12 r19.3rmv 3419 . . . . . . . . 9  |-  ( E. w  w  e.  om  ->  ( ph  <->  A. y  e.  om  ph ) )
1311, 12ax-mp 7 . . . . . . . 8  |-  ( ph  <->  A. y  e.  om  ph )
14 rabid2 2581 . . . . . . . 8  |-  ( om  =  { y  e. 
om  |  ph }  <->  A. y  e.  om  ph )
1513, 14sylbb2 137 . . . . . . 7  |-  ( ph  ->  om  =  { y  e.  om  |  ph } )
1615eleq1d 2183 . . . . . 6  |-  ( ph  ->  ( om  e.  Fin  <->  {
y  e.  om  |  ph }  e.  Fin )
)
178, 16mtbii 646 . . . . 5  |-  ( ph  ->  -.  { y  e. 
om  |  ph }  e.  Fin )
1817con2i 599 . . . 4  |-  ( { y  e.  om  |  ph }  e.  Fin  ->  -. 
ph )
19 infm 6751 . . . . 5  |-  ( om  ~<_  { y  e.  om  |  ph }  ->  E. z 
z  e.  { y  e.  om  |  ph } )
20 biidd 171 . . . . . . . 8  |-  ( y  =  z  ->  ( ph 
<-> 
ph ) )
2120elrab 2809 . . . . . . 7  |-  ( z  e.  { y  e. 
om  |  ph }  <->  ( z  e.  om  /\  ph ) )
2221simprbi 271 . . . . . 6  |-  ( z  e.  { y  e. 
om  |  ph }  ->  ph )
2322exlimiv 1560 . . . . 5  |-  ( E. z  z  e.  {
y  e.  om  |  ph }  ->  ph )
2419, 23syl 14 . . . 4  |-  ( om  ~<_  { y  e.  om  |  ph }  ->  ph )
2518, 24orim12i 731 . . 3  |-  ( ( { y  e.  om  |  ph }  e.  Fin  \/ 
om  ~<_  { y  e. 
om  |  ph }
)  ->  ( -.  ph  \/  ph ) )
267, 25ax-mp 7 . 2  |-  ( -. 
ph  \/  ph )
27 orcom 700 . 2  |-  ( ( -.  ph  \/  ph )  <->  (
ph  \/  -.  ph )
)
2826, 27mpbi 144 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104    \/ wo 680    = wceq 1314   E.wex 1451    e. wcel 1463   A.wral 2390   {crab 2394   (/)c0 3329   class class class wbr 3895   omcom 4464    ~<_ cdom 6587   Fincfn 6588
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-er 6383  df-en 6589  df-dom 6590  df-fin 6591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator