ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffiexmid Unicode version

Theorem inffiexmid 6844
Description: If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
Hypothesis
Ref Expression
inffiexmid.1  |-  ( x  e.  Fin  \/  om  ~<_  x )
Assertion
Ref Expression
inffiexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem inffiexmid
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4550 . . . . 5  |-  om  e.  _V
21rabex 4108 . . . 4  |-  { y  e.  om  |  ph }  e.  _V
3 eleq1 2220 . . . . 5  |-  ( x  =  { y  e. 
om  |  ph }  ->  ( x  e.  Fin  <->  {
y  e.  om  |  ph }  e.  Fin )
)
4 breq2 3969 . . . . 5  |-  ( x  =  { y  e. 
om  |  ph }  ->  ( om  ~<_  x  <->  om  ~<_  { y  e.  om  |  ph } ) )
53, 4orbi12d 783 . . . 4  |-  ( x  =  { y  e. 
om  |  ph }  ->  ( ( x  e. 
Fin  \/  om  ~<_  x )  <-> 
( { y  e. 
om  |  ph }  e.  Fin  \/  om  ~<_  { y  e.  om  |  ph } ) ) )
6 inffiexmid.1 . . . 4  |-  ( x  e.  Fin  \/  om  ~<_  x )
72, 5, 6vtocl 2766 . . 3  |-  ( { y  e.  om  |  ph }  e.  Fin  \/  om  ~<_  { y  e.  om  |  ph } )
8 ominf 6834 . . . . . 6  |-  -.  om  e.  Fin
9 peano1 4551 . . . . . . . . . 10  |-  (/)  e.  om
10 elex2 2728 . . . . . . . . . 10  |-  ( (/)  e.  om  ->  E. w  w  e.  om )
119, 10ax-mp 5 . . . . . . . . 9  |-  E. w  w  e.  om
12 r19.3rmv 3484 . . . . . . . . 9  |-  ( E. w  w  e.  om  ->  ( ph  <->  A. y  e.  om  ph ) )
1311, 12ax-mp 5 . . . . . . . 8  |-  ( ph  <->  A. y  e.  om  ph )
14 rabid2 2633 . . . . . . . 8  |-  ( om  =  { y  e. 
om  |  ph }  <->  A. y  e.  om  ph )
1513, 14sylbb2 137 . . . . . . 7  |-  ( ph  ->  om  =  { y  e.  om  |  ph } )
1615eleq1d 2226 . . . . . 6  |-  ( ph  ->  ( om  e.  Fin  <->  {
y  e.  om  |  ph }  e.  Fin )
)
178, 16mtbii 664 . . . . 5  |-  ( ph  ->  -.  { y  e. 
om  |  ph }  e.  Fin )
1817con2i 617 . . . 4  |-  ( { y  e.  om  |  ph }  e.  Fin  ->  -. 
ph )
19 infm 6842 . . . . 5  |-  ( om  ~<_  { y  e.  om  |  ph }  ->  E. z 
z  e.  { y  e.  om  |  ph } )
20 biidd 171 . . . . . . . 8  |-  ( y  =  z  ->  ( ph 
<-> 
ph ) )
2120elrab 2868 . . . . . . 7  |-  ( z  e.  { y  e. 
om  |  ph }  <->  ( z  e.  om  /\  ph ) )
2221simprbi 273 . . . . . 6  |-  ( z  e.  { y  e. 
om  |  ph }  ->  ph )
2322exlimiv 1578 . . . . 5  |-  ( E. z  z  e.  {
y  e.  om  |  ph }  ->  ph )
2419, 23syl 14 . . . 4  |-  ( om  ~<_  { y  e.  om  |  ph }  ->  ph )
2518, 24orim12i 749 . . 3  |-  ( ( { y  e.  om  |  ph }  e.  Fin  \/ 
om  ~<_  { y  e. 
om  |  ph }
)  ->  ( -.  ph  \/  ph ) )
267, 25ax-mp 5 . 2  |-  ( -. 
ph  \/  ph )
27 orcom 718 . 2  |-  ( ( -.  ph  \/  ph )  <->  (
ph  \/  -.  ph )
)
2826, 27mpbi 144 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104    \/ wo 698    = wceq 1335   E.wex 1472    e. wcel 2128   A.wral 2435   {crab 2439   (/)c0 3394   class class class wbr 3965   omcom 4547    ~<_ cdom 6677   Fincfn 6678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-er 6473  df-en 6679  df-dom 6680  df-fin 6681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator