Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inffiexmid | Unicode version |
Description: If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.) |
Ref | Expression |
---|---|
inffiexmid.1 |
Ref | Expression |
---|---|
inffiexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4577 | . . . . 5 | |
2 | 1 | rabex 4133 | . . . 4 |
3 | eleq1 2233 | . . . . 5 | |
4 | breq2 3993 | . . . . 5 | |
5 | 3, 4 | orbi12d 788 | . . . 4 |
6 | inffiexmid.1 | . . . 4 | |
7 | 2, 5, 6 | vtocl 2784 | . . 3 |
8 | ominf 6874 | . . . . . 6 | |
9 | peano1 4578 | . . . . . . . . . 10 | |
10 | elex2 2746 | . . . . . . . . . 10 | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . 9 |
12 | r19.3rmv 3505 | . . . . . . . . 9 | |
13 | 11, 12 | ax-mp 5 | . . . . . . . 8 |
14 | rabid2 2646 | . . . . . . . 8 | |
15 | 13, 14 | sylbb2 137 | . . . . . . 7 |
16 | 15 | eleq1d 2239 | . . . . . 6 |
17 | 8, 16 | mtbii 669 | . . . . 5 |
18 | 17 | con2i 622 | . . . 4 |
19 | infm 6882 | . . . . 5 | |
20 | biidd 171 | . . . . . . . 8 | |
21 | 20 | elrab 2886 | . . . . . . 7 |
22 | 21 | simprbi 273 | . . . . . 6 |
23 | 22 | exlimiv 1591 | . . . . 5 |
24 | 19, 23 | syl 14 | . . . 4 |
25 | 18, 24 | orim12i 754 | . . 3 |
26 | 7, 25 | ax-mp 5 | . 2 |
27 | orcom 723 | . 2 | |
28 | 26, 27 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 wo 703 wceq 1348 wex 1485 wcel 2141 wral 2448 crab 2452 c0 3414 class class class wbr 3989 com 4574 cdom 6717 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |