ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplitsnun Unicode version

Theorem fsumsplitsnun 11220
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)
Assertion
Ref Expression
fsumsplitsnun  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { Z } ) B  =  ( sum_ k  e.  A  B  +  [_ Z  / 
k ]_ B ) )
Distinct variable groups:    A, k    k, Z
Allowed substitution hints:    B( k)    V( k)

Proof of Theorem fsumsplitsnun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-nel 2405 . . . . . . 7  |-  ( Z  e/  A  <->  -.  Z  e.  A )
2 disjsn 3593 . . . . . . 7  |-  ( ( A  i^i  { Z } )  =  (/)  <->  -.  Z  e.  A )
31, 2sylbb2 137 . . . . . 6  |-  ( Z  e/  A  ->  ( A  i^i  { Z }
)  =  (/) )
43adantl 275 . . . . 5  |-  ( ( Z  e.  V  /\  Z  e/  A )  -> 
( A  i^i  { Z } )  =  (/) )
543ad2ant2 1004 . . . 4  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  ( A  i^i  { Z }
)  =  (/) )
6 eqidd 2141 . . . 4  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  ( A  u.  { Z } )  =  ( A  u.  { Z } ) )
7 simp1 982 . . . . 5  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  A  e.  Fin )
8 simp2l 1008 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  Z  e.  V )
9 snfig 6716 . . . . . 6  |-  ( Z  e.  V  ->  { Z }  e.  Fin )
108, 9syl 14 . . . . 5  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  { Z }  e.  Fin )
11 unfidisj 6818 . . . . 5  |-  ( ( A  e.  Fin  /\  { Z }  e.  Fin  /\  ( A  i^i  { Z } )  =  (/) )  ->  ( A  u.  { Z } )  e. 
Fin )
127, 10, 5, 11syl3anc 1217 . . . 4  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  ( A  u.  { Z } )  e.  Fin )
13 rspcsbela 3064 . . . . . . . 8  |-  ( ( x  e.  ( A  u.  { Z }
)  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  [_ x  /  k ]_ B  e.  ZZ )
1413expcom 115 . . . . . . 7  |-  ( A. k  e.  ( A  u.  { Z } ) B  e.  ZZ  ->  ( x  e.  ( A  u.  { Z }
)  ->  [_ x  / 
k ]_ B  e.  ZZ ) )
15143ad2ant3 1005 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  (
x  e.  ( A  u.  { Z }
)  ->  [_ x  / 
k ]_ B  e.  ZZ ) )
1615imp 123 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  /\  x  e.  ( A  u.  { Z } ) )  ->  [_ x  /  k ]_ B  e.  ZZ )
1716zcnd 9198 . . . 4  |-  ( ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  /\  x  e.  ( A  u.  { Z } ) )  ->  [_ x  /  k ]_ B  e.  CC )
185, 6, 12, 17fsumsplit 11208 . . 3  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  sum_ x  e.  ( A  u.  { Z } ) [_ x  /  k ]_ B  =  ( sum_ x  e.  A  [_ x  / 
k ]_ B  +  sum_ x  e.  { Z } [_ x  /  k ]_ B ) )
19 nfcv 2282 . . . 4  |-  F/_ x B
20 nfcsb1v 3040 . . . 4  |-  F/_ k [_ x  /  k ]_ B
21 csbeq1a 3016 . . . 4  |-  ( k  =  x  ->  B  =  [_ x  /  k ]_ B )
2219, 20, 21cbvsumi 11163 . . 3  |-  sum_ k  e.  ( A  u.  { Z } ) B  = 
sum_ x  e.  ( A  u.  { Z } ) [_ x  /  k ]_ B
2319, 20, 21cbvsumi 11163 . . . 4  |-  sum_ k  e.  A  B  =  sum_ x  e.  A  [_ x  /  k ]_ B
2419, 20, 21cbvsumi 11163 . . . 4  |-  sum_ k  e.  { Z } B  =  sum_ x  e.  { Z } [_ x  / 
k ]_ B
2523, 24oveq12i 5794 . . 3  |-  ( sum_ k  e.  A  B  +  sum_ k  e.  { Z } B )  =  ( sum_ x  e.  A  [_ x  /  k ]_ B  +  sum_ x  e. 
{ Z } [_ x  /  k ]_ B
)
2618, 22, 253eqtr4g 2198 . 2  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { Z } ) B  =  ( sum_ k  e.  A  B  +  sum_ k  e. 
{ Z } B
) )
27 snidg 3561 . . . . . . . . 9  |-  ( Z  e.  V  ->  Z  e.  { Z } )
2827adantr 274 . . . . . . . 8  |-  ( ( Z  e.  V  /\  Z  e/  A )  ->  Z  e.  { Z } )
29283ad2ant2 1004 . . . . . . 7  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  Z  e.  { Z } )
30 elun2 3249 . . . . . . 7  |-  ( Z  e.  { Z }  ->  Z  e.  ( A  u.  { Z }
) )
3129, 30syl 14 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  Z  e.  ( A  u.  { Z } ) )
32 simp3 984 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )
33 rspcsbela 3064 . . . . . 6  |-  ( ( Z  e.  ( A  u.  { Z }
)  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  [_ Z  /  k ]_ B  e.  ZZ )
3431, 32, 33syl2anc 409 . . . . 5  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  [_ Z  /  k ]_ B  e.  ZZ )
3534zcnd 9198 . . . 4  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  [_ Z  /  k ]_ B  e.  CC )
36 sumsns 11216 . . . 4  |-  ( ( Z  e.  V  /\  [_ Z  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  { Z } B  =  [_ Z  /  k ]_ B
)
378, 35, 36syl2anc 409 . . 3  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  sum_ k  e.  { Z } B  =  [_ Z  /  k ]_ B )
3837oveq2d 5798 . 2  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  ( sum_ k  e.  A  B  +  sum_ k  e.  { Z } B )  =  ( sum_ k  e.  A  B  +  [_ Z  / 
k ]_ B ) )
3926, 38eqtrd 2173 1  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { Z } ) B  =  ( sum_ k  e.  A  B  +  [_ Z  / 
k ]_ B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481    e/ wnel 2404   A.wral 2417   [_csb 3007    u. cun 3074    i^i cin 3075   (/)c0 3368   {csn 3532  (class class class)co 5782   Fincfn 6642   CCcc 7642    + caddc 7647   ZZcz 9078   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  modfsummodlemstep  11258
  Copyright terms: Public domain W3C validator