ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplitsnun Unicode version

Theorem fsumsplitsnun 11925
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)
Assertion
Ref Expression
fsumsplitsnun  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { Z } ) B  =  ( sum_ k  e.  A  B  +  [_ Z  / 
k ]_ B ) )
Distinct variable groups:    A, k    k, Z
Allowed substitution hints:    B( k)    V( k)

Proof of Theorem fsumsplitsnun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-nel 2496 . . . . . . 7  |-  ( Z  e/  A  <->  -.  Z  e.  A )
2 disjsn 3728 . . . . . . 7  |-  ( ( A  i^i  { Z } )  =  (/)  <->  -.  Z  e.  A )
31, 2sylbb2 138 . . . . . 6  |-  ( Z  e/  A  ->  ( A  i^i  { Z }
)  =  (/) )
43adantl 277 . . . . 5  |-  ( ( Z  e.  V  /\  Z  e/  A )  -> 
( A  i^i  { Z } )  =  (/) )
543ad2ant2 1043 . . . 4  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  ( A  i^i  { Z }
)  =  (/) )
6 eqidd 2230 . . . 4  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  ( A  u.  { Z } )  =  ( A  u.  { Z } ) )
7 simp1 1021 . . . . 5  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  A  e.  Fin )
8 simp2l 1047 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  Z  e.  V )
9 snfig 6965 . . . . . 6  |-  ( Z  e.  V  ->  { Z }  e.  Fin )
108, 9syl 14 . . . . 5  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  { Z }  e.  Fin )
11 unfidisj 7080 . . . . 5  |-  ( ( A  e.  Fin  /\  { Z }  e.  Fin  /\  ( A  i^i  { Z } )  =  (/) )  ->  ( A  u.  { Z } )  e. 
Fin )
127, 10, 5, 11syl3anc 1271 . . . 4  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  ( A  u.  { Z } )  e.  Fin )
13 rspcsbela 3184 . . . . . . . 8  |-  ( ( x  e.  ( A  u.  { Z }
)  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  [_ x  /  k ]_ B  e.  ZZ )
1413expcom 116 . . . . . . 7  |-  ( A. k  e.  ( A  u.  { Z } ) B  e.  ZZ  ->  ( x  e.  ( A  u.  { Z }
)  ->  [_ x  / 
k ]_ B  e.  ZZ ) )
15143ad2ant3 1044 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  (
x  e.  ( A  u.  { Z }
)  ->  [_ x  / 
k ]_ B  e.  ZZ ) )
1615imp 124 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  /\  x  e.  ( A  u.  { Z } ) )  ->  [_ x  /  k ]_ B  e.  ZZ )
1716zcnd 9566 . . . 4  |-  ( ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  /\  x  e.  ( A  u.  { Z } ) )  ->  [_ x  /  k ]_ B  e.  CC )
185, 6, 12, 17fsumsplit 11913 . . 3  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  sum_ x  e.  ( A  u.  { Z } ) [_ x  /  k ]_ B  =  ( sum_ x  e.  A  [_ x  / 
k ]_ B  +  sum_ x  e.  { Z } [_ x  /  k ]_ B ) )
19 nfcv 2372 . . . 4  |-  F/_ x B
20 nfcsb1v 3157 . . . 4  |-  F/_ k [_ x  /  k ]_ B
21 csbeq1a 3133 . . . 4  |-  ( k  =  x  ->  B  =  [_ x  /  k ]_ B )
2219, 20, 21cbvsumi 11868 . . 3  |-  sum_ k  e.  ( A  u.  { Z } ) B  = 
sum_ x  e.  ( A  u.  { Z } ) [_ x  /  k ]_ B
2319, 20, 21cbvsumi 11868 . . . 4  |-  sum_ k  e.  A  B  =  sum_ x  e.  A  [_ x  /  k ]_ B
2419, 20, 21cbvsumi 11868 . . . 4  |-  sum_ k  e.  { Z } B  =  sum_ x  e.  { Z } [_ x  / 
k ]_ B
2523, 24oveq12i 6012 . . 3  |-  ( sum_ k  e.  A  B  +  sum_ k  e.  { Z } B )  =  ( sum_ x  e.  A  [_ x  /  k ]_ B  +  sum_ x  e. 
{ Z } [_ x  /  k ]_ B
)
2618, 22, 253eqtr4g 2287 . 2  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { Z } ) B  =  ( sum_ k  e.  A  B  +  sum_ k  e. 
{ Z } B
) )
27 snidg 3695 . . . . . . . . 9  |-  ( Z  e.  V  ->  Z  e.  { Z } )
2827adantr 276 . . . . . . . 8  |-  ( ( Z  e.  V  /\  Z  e/  A )  ->  Z  e.  { Z } )
29283ad2ant2 1043 . . . . . . 7  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  Z  e.  { Z } )
30 elun2 3372 . . . . . . 7  |-  ( Z  e.  { Z }  ->  Z  e.  ( A  u.  { Z }
) )
3129, 30syl 14 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  Z  e.  ( A  u.  { Z } ) )
32 simp3 1023 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )
33 rspcsbela 3184 . . . . . 6  |-  ( ( Z  e.  ( A  u.  { Z }
)  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  [_ Z  /  k ]_ B  e.  ZZ )
3431, 32, 33syl2anc 411 . . . . 5  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  [_ Z  /  k ]_ B  e.  ZZ )
3534zcnd 9566 . . . 4  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  [_ Z  /  k ]_ B  e.  CC )
36 sumsns 11921 . . . 4  |-  ( ( Z  e.  V  /\  [_ Z  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  { Z } B  =  [_ Z  /  k ]_ B
)
378, 35, 36syl2anc 411 . . 3  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  sum_ k  e.  { Z } B  =  [_ Z  /  k ]_ B )
3837oveq2d 6016 . 2  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  ( sum_ k  e.  A  B  +  sum_ k  e.  { Z } B )  =  ( sum_ k  e.  A  B  +  [_ Z  / 
k ]_ B ) )
3926, 38eqtrd 2262 1  |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A )  /\  A. k  e.  ( A  u.  { Z } ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { Z } ) B  =  ( sum_ k  e.  A  B  +  [_ Z  / 
k ]_ B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    e/ wnel 2495   A.wral 2508   [_csb 3124    u. cun 3195    i^i cin 3196   (/)c0 3491   {csn 3666  (class class class)co 6000   Fincfn 6885   CCcc 7993    + caddc 7998   ZZcz 9442   sum_csu 11859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860
This theorem is referenced by:  modfsummodlemstep  11963
  Copyright terms: Public domain W3C validator