ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1nel3 Unicode version

Theorem pw1nel3 7416
Description: Negated excluded middle implies that the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1nel3  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )

Proof of Theorem pw1nel3
StepHypRef Expression
1 pw1ne0 7413 . . . . 5  |-  ~P 1o  =/=  (/)
2 pw1ne1 7414 . . . . 5  |-  ~P 1o  =/=  1o
31, 2nelpri 3690 . . . 4  |-  -.  ~P 1o  e.  { (/) ,  1o }
43a1i 9 . . 3  |-  ( -. EXMID  ->  -.  ~P 1o  e.  { (/)
,  1o } )
5 df2o3 6576 . . . 4  |-  2o  =  { (/) ,  1o }
65eleq2i 2296 . . 3  |-  ( ~P 1o  e.  2o  <->  ~P 1o  e.  { (/) ,  1o }
)
74, 6sylnibr 681 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  2o )
8 exmidpweq 7071 . . . 4  |-  (EXMID  <->  ~P 1o  =  2o )
98notbii 672 . . 3  |-  ( -. EXMID  <->  -.  ~P 1o  =  2o )
10 1oex 6570 . . . . . 6  |-  1o  e.  _V
1110pwex 4267 . . . . 5  |-  ~P 1o  e.  _V
1211elsn 3682 . . . 4  |-  ( ~P 1o  e.  { 2o } 
<->  ~P 1o  =  2o )
1312notbii 672 . . 3  |-  ( -. 
~P 1o  e.  { 2o }  <->  -.  ~P 1o  =  2o )
149, 13sylbb2 138 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  { 2o } )
15 df-3o 6564 . . . . . . 7  |-  3o  =  suc  2o
16 df-suc 4462 . . . . . . 7  |-  suc  2o  =  ( 2o  u.  { 2o } )
1715, 16eqtri 2250 . . . . . 6  |-  3o  =  ( 2o  u.  { 2o } )
1817eleq2i 2296 . . . . 5  |-  ( ~P 1o  e.  3o  <->  ~P 1o  e.  ( 2o  u.  { 2o } ) )
19 elun 3345 . . . . 5  |-  ( ~P 1o  e.  ( 2o  u.  { 2o }
)  <->  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } ) )
2018, 19bitri 184 . . . 4  |-  ( ~P 1o  e.  3o  <->  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o }
) )
2120notbii 672 . . 3  |-  ( -. 
~P 1o  e.  3o  <->  -.  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } ) )
22 ioran 757 . . 3  |-  ( -.  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } )  <->  ( -.  ~P 1o  e.  2o  /\  -.  ~P 1o  e.  { 2o } ) )
2321, 22bitri 184 . 2  |-  ( -. 
~P 1o  e.  3o  <->  ( -.  ~P 1o  e.  2o  /\  -.  ~P 1o  e.  { 2o } ) )
247, 14, 23sylanbrc 417 1  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200    u. cun 3195   (/)c0 3491   ~Pcpw 3649   {csn 3666   {cpr 3667  EXMIDwem 4278   suc csuc 4456   1oc1o 6555   2oc2o 6556   3oc3o 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-exmid 4279  df-iord 4457  df-on 4459  df-suc 4462  df-1o 6562  df-2o 6563  df-3o 6564
This theorem is referenced by:  sucpw1ne3  7417  sucpw1nss3  7420
  Copyright terms: Public domain W3C validator