ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1nel3 Unicode version

Theorem pw1nel3 7343
Description: Negated excluded middle implies that the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1nel3  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )

Proof of Theorem pw1nel3
StepHypRef Expression
1 pw1ne0 7340 . . . . 5  |-  ~P 1o  =/=  (/)
2 pw1ne1 7341 . . . . 5  |-  ~P 1o  =/=  1o
31, 2nelpri 3657 . . . 4  |-  -.  ~P 1o  e.  { (/) ,  1o }
43a1i 9 . . 3  |-  ( -. EXMID  ->  -.  ~P 1o  e.  { (/)
,  1o } )
5 df2o3 6516 . . . 4  |-  2o  =  { (/) ,  1o }
65eleq2i 2272 . . 3  |-  ( ~P 1o  e.  2o  <->  ~P 1o  e.  { (/) ,  1o }
)
74, 6sylnibr 679 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  2o )
8 exmidpweq 7006 . . . 4  |-  (EXMID  <->  ~P 1o  =  2o )
98notbii 670 . . 3  |-  ( -. EXMID  <->  -.  ~P 1o  =  2o )
10 1oex 6510 . . . . . 6  |-  1o  e.  _V
1110pwex 4227 . . . . 5  |-  ~P 1o  e.  _V
1211elsn 3649 . . . 4  |-  ( ~P 1o  e.  { 2o } 
<->  ~P 1o  =  2o )
1312notbii 670 . . 3  |-  ( -. 
~P 1o  e.  { 2o }  <->  -.  ~P 1o  =  2o )
149, 13sylbb2 138 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  { 2o } )
15 df-3o 6504 . . . . . . 7  |-  3o  =  suc  2o
16 df-suc 4418 . . . . . . 7  |-  suc  2o  =  ( 2o  u.  { 2o } )
1715, 16eqtri 2226 . . . . . 6  |-  3o  =  ( 2o  u.  { 2o } )
1817eleq2i 2272 . . . . 5  |-  ( ~P 1o  e.  3o  <->  ~P 1o  e.  ( 2o  u.  { 2o } ) )
19 elun 3314 . . . . 5  |-  ( ~P 1o  e.  ( 2o  u.  { 2o }
)  <->  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } ) )
2018, 19bitri 184 . . . 4  |-  ( ~P 1o  e.  3o  <->  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o }
) )
2120notbii 670 . . 3  |-  ( -. 
~P 1o  e.  3o  <->  -.  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } ) )
22 ioran 754 . . 3  |-  ( -.  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } )  <->  ( -.  ~P 1o  e.  2o  /\  -.  ~P 1o  e.  { 2o } ) )
2321, 22bitri 184 . 2  |-  ( -. 
~P 1o  e.  3o  <->  ( -.  ~P 1o  e.  2o  /\  -.  ~P 1o  e.  { 2o } ) )
247, 14, 23sylanbrc 417 1  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176    u. cun 3164   (/)c0 3460   ~Pcpw 3616   {csn 3633   {cpr 3634  EXMIDwem 4238   suc csuc 4412   1oc1o 6495   2oc2o 6496   3oc3o 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-exmid 4239  df-iord 4413  df-on 4415  df-suc 4418  df-1o 6502  df-2o 6503  df-3o 6504
This theorem is referenced by:  sucpw1ne3  7344  sucpw1nss3  7347
  Copyright terms: Public domain W3C validator