| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1nel3 | Unicode version | ||
| Description: Negated excluded middle
implies that the power set of |
| Ref | Expression |
|---|---|
| pw1nel3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1ne0 7295 |
. . . . 5
| |
| 2 | pw1ne1 7296 |
. . . . 5
| |
| 3 | 1, 2 | nelpri 3646 |
. . . 4
|
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | df2o3 6488 |
. . . 4
| |
| 6 | 5 | eleq2i 2263 |
. . 3
|
| 7 | 4, 6 | sylnibr 678 |
. 2
|
| 8 | exmidpweq 6970 |
. . . 4
| |
| 9 | 8 | notbii 669 |
. . 3
|
| 10 | 1oex 6482 |
. . . . . 6
| |
| 11 | 10 | pwex 4216 |
. . . . 5
|
| 12 | 11 | elsn 3638 |
. . . 4
|
| 13 | 12 | notbii 669 |
. . 3
|
| 14 | 9, 13 | sylbb2 138 |
. 2
|
| 15 | df-3o 6476 |
. . . . . . 7
| |
| 16 | df-suc 4406 |
. . . . . . 7
| |
| 17 | 15, 16 | eqtri 2217 |
. . . . . 6
|
| 18 | 17 | eleq2i 2263 |
. . . . 5
|
| 19 | elun 3304 |
. . . . 5
| |
| 20 | 18, 19 | bitri 184 |
. . . 4
|
| 21 | 20 | notbii 669 |
. . 3
|
| 22 | ioran 753 |
. . 3
| |
| 23 | 21, 22 | bitri 184 |
. 2
|
| 24 | 7, 14, 23 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-exmid 4228 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 df-2o 6475 df-3o 6476 |
| This theorem is referenced by: sucpw1ne3 7299 sucpw1nss3 7302 |
| Copyright terms: Public domain | W3C validator |