ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1nel3 Unicode version

Theorem pw1nel3 7377
Description: Negated excluded middle implies that the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1nel3  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )

Proof of Theorem pw1nel3
StepHypRef Expression
1 pw1ne0 7374 . . . . 5  |-  ~P 1o  =/=  (/)
2 pw1ne1 7375 . . . . 5  |-  ~P 1o  =/=  1o
31, 2nelpri 3667 . . . 4  |-  -.  ~P 1o  e.  { (/) ,  1o }
43a1i 9 . . 3  |-  ( -. EXMID  ->  -.  ~P 1o  e.  { (/)
,  1o } )
5 df2o3 6539 . . . 4  |-  2o  =  { (/) ,  1o }
65eleq2i 2274 . . 3  |-  ( ~P 1o  e.  2o  <->  ~P 1o  e.  { (/) ,  1o }
)
74, 6sylnibr 679 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  2o )
8 exmidpweq 7032 . . . 4  |-  (EXMID  <->  ~P 1o  =  2o )
98notbii 670 . . 3  |-  ( -. EXMID  <->  -.  ~P 1o  =  2o )
10 1oex 6533 . . . . . 6  |-  1o  e.  _V
1110pwex 4243 . . . . 5  |-  ~P 1o  e.  _V
1211elsn 3659 . . . 4  |-  ( ~P 1o  e.  { 2o } 
<->  ~P 1o  =  2o )
1312notbii 670 . . 3  |-  ( -. 
~P 1o  e.  { 2o }  <->  -.  ~P 1o  =  2o )
149, 13sylbb2 138 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  { 2o } )
15 df-3o 6527 . . . . . . 7  |-  3o  =  suc  2o
16 df-suc 4436 . . . . . . 7  |-  suc  2o  =  ( 2o  u.  { 2o } )
1715, 16eqtri 2228 . . . . . 6  |-  3o  =  ( 2o  u.  { 2o } )
1817eleq2i 2274 . . . . 5  |-  ( ~P 1o  e.  3o  <->  ~P 1o  e.  ( 2o  u.  { 2o } ) )
19 elun 3322 . . . . 5  |-  ( ~P 1o  e.  ( 2o  u.  { 2o }
)  <->  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } ) )
2018, 19bitri 184 . . . 4  |-  ( ~P 1o  e.  3o  <->  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o }
) )
2120notbii 670 . . 3  |-  ( -. 
~P 1o  e.  3o  <->  -.  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } ) )
22 ioran 754 . . 3  |-  ( -.  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } )  <->  ( -.  ~P 1o  e.  2o  /\  -.  ~P 1o  e.  { 2o } ) )
2321, 22bitri 184 . 2  |-  ( -. 
~P 1o  e.  3o  <->  ( -.  ~P 1o  e.  2o  /\  -.  ~P 1o  e.  { 2o } ) )
247, 14, 23sylanbrc 417 1  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178    u. cun 3172   (/)c0 3468   ~Pcpw 3626   {csn 3643   {cpr 3644  EXMIDwem 4254   suc csuc 4430   1oc1o 6518   2oc2o 6519   3oc3o 6520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-tr 4159  df-exmid 4255  df-iord 4431  df-on 4433  df-suc 4436  df-1o 6525  df-2o 6526  df-3o 6527
This theorem is referenced by:  sucpw1ne3  7378  sucpw1nss3  7381
  Copyright terms: Public domain W3C validator