ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1nel3 Unicode version

Theorem pw1nel3 7291
Description: Negated excluded middle implies that the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1nel3  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )

Proof of Theorem pw1nel3
StepHypRef Expression
1 pw1ne0 7288 . . . . 5  |-  ~P 1o  =/=  (/)
2 pw1ne1 7289 . . . . 5  |-  ~P 1o  =/=  1o
31, 2nelpri 3642 . . . 4  |-  -.  ~P 1o  e.  { (/) ,  1o }
43a1i 9 . . 3  |-  ( -. EXMID  ->  -.  ~P 1o  e.  { (/)
,  1o } )
5 df2o3 6483 . . . 4  |-  2o  =  { (/) ,  1o }
65eleq2i 2260 . . 3  |-  ( ~P 1o  e.  2o  <->  ~P 1o  e.  { (/) ,  1o }
)
74, 6sylnibr 678 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  2o )
8 exmidpweq 6965 . . . 4  |-  (EXMID  <->  ~P 1o  =  2o )
98notbii 669 . . 3  |-  ( -. EXMID  <->  -.  ~P 1o  =  2o )
10 1oex 6477 . . . . . 6  |-  1o  e.  _V
1110pwex 4212 . . . . 5  |-  ~P 1o  e.  _V
1211elsn 3634 . . . 4  |-  ( ~P 1o  e.  { 2o } 
<->  ~P 1o  =  2o )
1312notbii 669 . . 3  |-  ( -. 
~P 1o  e.  { 2o }  <->  -.  ~P 1o  =  2o )
149, 13sylbb2 138 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  { 2o } )
15 df-3o 6471 . . . . . . 7  |-  3o  =  suc  2o
16 df-suc 4402 . . . . . . 7  |-  suc  2o  =  ( 2o  u.  { 2o } )
1715, 16eqtri 2214 . . . . . 6  |-  3o  =  ( 2o  u.  { 2o } )
1817eleq2i 2260 . . . . 5  |-  ( ~P 1o  e.  3o  <->  ~P 1o  e.  ( 2o  u.  { 2o } ) )
19 elun 3300 . . . . 5  |-  ( ~P 1o  e.  ( 2o  u.  { 2o }
)  <->  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } ) )
2018, 19bitri 184 . . . 4  |-  ( ~P 1o  e.  3o  <->  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o }
) )
2120notbii 669 . . 3  |-  ( -. 
~P 1o  e.  3o  <->  -.  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } ) )
22 ioran 753 . . 3  |-  ( -.  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } )  <->  ( -.  ~P 1o  e.  2o  /\  -.  ~P 1o  e.  { 2o } ) )
2321, 22bitri 184 . 2  |-  ( -. 
~P 1o  e.  3o  <->  ( -.  ~P 1o  e.  2o  /\  -.  ~P 1o  e.  { 2o } ) )
247, 14, 23sylanbrc 417 1  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164    u. cun 3151   (/)c0 3446   ~Pcpw 3601   {csn 3618   {cpr 3619  EXMIDwem 4223   suc csuc 4396   1oc1o 6462   2oc2o 6463   3oc3o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-exmid 4224  df-iord 4397  df-on 4399  df-suc 4402  df-1o 6469  df-2o 6470  df-3o 6471
This theorem is referenced by:  sucpw1ne3  7292  sucpw1nss3  7295
  Copyright terms: Public domain W3C validator