ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1nel3 Unicode version

Theorem pw1nel3 7314
Description: Negated excluded middle implies that the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1nel3  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )

Proof of Theorem pw1nel3
StepHypRef Expression
1 pw1ne0 7311 . . . . 5  |-  ~P 1o  =/=  (/)
2 pw1ne1 7312 . . . . 5  |-  ~P 1o  =/=  1o
31, 2nelpri 3647 . . . 4  |-  -.  ~P 1o  e.  { (/) ,  1o }
43a1i 9 . . 3  |-  ( -. EXMID  ->  -.  ~P 1o  e.  { (/)
,  1o } )
5 df2o3 6497 . . . 4  |-  2o  =  { (/) ,  1o }
65eleq2i 2263 . . 3  |-  ( ~P 1o  e.  2o  <->  ~P 1o  e.  { (/) ,  1o }
)
74, 6sylnibr 678 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  2o )
8 exmidpweq 6979 . . . 4  |-  (EXMID  <->  ~P 1o  =  2o )
98notbii 669 . . 3  |-  ( -. EXMID  <->  -.  ~P 1o  =  2o )
10 1oex 6491 . . . . . 6  |-  1o  e.  _V
1110pwex 4217 . . . . 5  |-  ~P 1o  e.  _V
1211elsn 3639 . . . 4  |-  ( ~P 1o  e.  { 2o } 
<->  ~P 1o  =  2o )
1312notbii 669 . . 3  |-  ( -. 
~P 1o  e.  { 2o }  <->  -.  ~P 1o  =  2o )
149, 13sylbb2 138 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  { 2o } )
15 df-3o 6485 . . . . . . 7  |-  3o  =  suc  2o
16 df-suc 4407 . . . . . . 7  |-  suc  2o  =  ( 2o  u.  { 2o } )
1715, 16eqtri 2217 . . . . . 6  |-  3o  =  ( 2o  u.  { 2o } )
1817eleq2i 2263 . . . . 5  |-  ( ~P 1o  e.  3o  <->  ~P 1o  e.  ( 2o  u.  { 2o } ) )
19 elun 3305 . . . . 5  |-  ( ~P 1o  e.  ( 2o  u.  { 2o }
)  <->  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } ) )
2018, 19bitri 184 . . . 4  |-  ( ~P 1o  e.  3o  <->  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o }
) )
2120notbii 669 . . 3  |-  ( -. 
~P 1o  e.  3o  <->  -.  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } ) )
22 ioran 753 . . 3  |-  ( -.  ( ~P 1o  e.  2o  \/  ~P 1o  e.  { 2o } )  <->  ( -.  ~P 1o  e.  2o  /\  -.  ~P 1o  e.  { 2o } ) )
2321, 22bitri 184 . 2  |-  ( -. 
~P 1o  e.  3o  <->  ( -.  ~P 1o  e.  2o  /\  -.  ~P 1o  e.  { 2o } ) )
247, 14, 23sylanbrc 417 1  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    u. cun 3155   (/)c0 3451   ~Pcpw 3606   {csn 3623   {cpr 3624  EXMIDwem 4228   suc csuc 4401   1oc1o 6476   2oc2o 6477   3oc3o 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-tr 4133  df-exmid 4229  df-iord 4402  df-on 4404  df-suc 4407  df-1o 6483  df-2o 6484  df-3o 6485
This theorem is referenced by:  sucpw1ne3  7315  sucpw1nss3  7318
  Copyright terms: Public domain W3C validator