| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1nel3 | Unicode version | ||
| Description: Negated excluded middle
implies that the power set of |
| Ref | Expression |
|---|---|
| pw1nel3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1ne0 7340 |
. . . . 5
| |
| 2 | pw1ne1 7341 |
. . . . 5
| |
| 3 | 1, 2 | nelpri 3657 |
. . . 4
|
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | df2o3 6516 |
. . . 4
| |
| 6 | 5 | eleq2i 2272 |
. . 3
|
| 7 | 4, 6 | sylnibr 679 |
. 2
|
| 8 | exmidpweq 7006 |
. . . 4
| |
| 9 | 8 | notbii 670 |
. . 3
|
| 10 | 1oex 6510 |
. . . . . 6
| |
| 11 | 10 | pwex 4227 |
. . . . 5
|
| 12 | 11 | elsn 3649 |
. . . 4
|
| 13 | 12 | notbii 670 |
. . 3
|
| 14 | 9, 13 | sylbb2 138 |
. 2
|
| 15 | df-3o 6504 |
. . . . . . 7
| |
| 16 | df-suc 4418 |
. . . . . . 7
| |
| 17 | 15, 16 | eqtri 2226 |
. . . . . 6
|
| 18 | 17 | eleq2i 2272 |
. . . . 5
|
| 19 | elun 3314 |
. . . . 5
| |
| 20 | 18, 19 | bitri 184 |
. . . 4
|
| 21 | 20 | notbii 670 |
. . 3
|
| 22 | ioran 754 |
. . 3
| |
| 23 | 21, 22 | bitri 184 |
. 2
|
| 24 | 7, 14, 23 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-exmid 4239 df-iord 4413 df-on 4415 df-suc 4418 df-1o 6502 df-2o 6503 df-3o 6504 |
| This theorem is referenced by: sucpw1ne3 7344 sucpw1nss3 7347 |
| Copyright terms: Public domain | W3C validator |