Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctssexmid | Unicode version |
Description: The decidability condition in ctssdc 7059 is needed. More specifically, ctssdc 7059 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) |
Ref | Expression |
---|---|
ctssexmid.1 | ⊔ |
ctssexmid.lpo | Omni |
Ref | Expression |
---|---|
ctssexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3213 | . . 3 | |
2 | f1oi 5454 | . . . 4 | |
3 | f1ofo 5423 | . . . 4 | |
4 | ctssexmid.lpo | . . . . . . . 8 Omni | |
5 | 4 | elexi 2724 | . . . . . . 7 |
6 | 5 | rabex 4110 | . . . . . 6 |
7 | resiexg 4913 | . . . . . 6 | |
8 | 6, 7 | ax-mp 5 | . . . . 5 |
9 | foeq1 5390 | . . . . 5 | |
10 | 8, 9 | spcev 2807 | . . . 4 |
11 | 2, 3, 10 | mp2b 8 | . . 3 |
12 | simpr 109 | . . . . . . 7 | |
13 | 12 | sseq1d 3157 | . . . . . 6 |
14 | eqidd 2158 | . . . . . . . 8 | |
15 | simpl 108 | . . . . . . . 8 | |
16 | 14, 12, 15 | foeq123d 5410 | . . . . . . 7 |
17 | 16 | exbidv 1805 | . . . . . 6 |
18 | 13, 17 | anbi12d 465 | . . . . 5 |
19 | djueq1 6986 | . . . . . . 7 ⊔ ⊔ | |
20 | foeq3 5392 | . . . . . . 7 ⊔ ⊔ ⊔ ⊔ | |
21 | 15, 19, 20 | 3syl 17 | . . . . . 6 ⊔ ⊔ |
22 | 21 | exbidv 1805 | . . . . 5 ⊔ ⊔ |
23 | 18, 22 | imbi12d 233 | . . . 4 ⊔ ⊔ |
24 | ctssexmid.1 | . . . 4 ⊔ | |
25 | 6, 6, 23, 24 | vtocl2 2767 | . . 3 ⊔ |
26 | 1, 11, 25 | mp2an 423 | . 2 ⊔ |
27 | 4 | a1i 9 | . . . 4 ⊔ Omni |
28 | id 19 | . . . 4 ⊔ ⊔ | |
29 | 27, 28 | fodjuomni 7094 | . . 3 ⊔ |
30 | 29 | exlimiv 1578 | . 2 ⊔ |
31 | biidd 171 | . . . . . 6 | |
32 | 31 | elrab 2868 | . . . . 5 |
33 | 32 | simprbi 273 | . . . 4 |
34 | 33 | exlimiv 1578 | . . 3 |
35 | rabeq0 3424 | . . . 4 | |
36 | peano1 4555 | . . . . 5 | |
37 | elex2 2728 | . . . . 5 | |
38 | r19.3rmv 3485 | . . . . 5 | |
39 | 36, 37, 38 | mp2b 8 | . . . 4 |
40 | 35, 39 | sylbb2 137 | . . 3 |
41 | 34, 40 | orim12i 749 | . 2 |
42 | 26, 30, 41 | mp2b 8 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1335 wex 1472 wcel 2128 wral 2435 crab 2439 cvv 2712 wss 3102 c0 3395 cid 4250 com 4551 cres 4590 wfo 5170 wf1o 5171 c1o 6358 ⊔ cdju 6983 Omnicomni 7079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-nul 4092 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-if 3507 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-br 3968 df-opab 4028 df-mpt 4029 df-tr 4065 df-id 4255 df-iord 4328 df-on 4330 df-suc 4333 df-iom 4552 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-f1 5177 df-fo 5178 df-f1o 5179 df-fv 5180 df-ov 5829 df-oprab 5830 df-mpo 5831 df-1st 6090 df-2nd 6091 df-1o 6365 df-2o 6366 df-map 6597 df-dju 6984 df-inl 6993 df-inr 6994 df-omni 7080 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |