| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ctssexmid | Unicode version | ||
| Description: The decidability condition in ctssdc 7179 is needed. More specifically, ctssdc 7179 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| ctssexmid.1 | 
 | 
| ctssexmid.lpo | 
 | 
| Ref | Expression | 
|---|---|
| ctssexmid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrab2 3268 | 
. . 3
 | |
| 2 | f1oi 5542 | 
. . . 4
 | |
| 3 | f1ofo 5511 | 
. . . 4
 | |
| 4 | ctssexmid.lpo | 
. . . . . . . 8
 | |
| 5 | 4 | elexi 2775 | 
. . . . . . 7
 | 
| 6 | 5 | rabex 4177 | 
. . . . . 6
 | 
| 7 | resiexg 4991 | 
. . . . . 6
 | |
| 8 | 6, 7 | ax-mp 5 | 
. . . . 5
 | 
| 9 | foeq1 5476 | 
. . . . 5
 | |
| 10 | 8, 9 | spcev 2859 | 
. . . 4
 | 
| 11 | 2, 3, 10 | mp2b 8 | 
. . 3
 | 
| 12 | simpr 110 | 
. . . . . . 7
 | |
| 13 | 12 | sseq1d 3212 | 
. . . . . 6
 | 
| 14 | eqidd 2197 | 
. . . . . . . 8
 | |
| 15 | simpl 109 | 
. . . . . . . 8
 | |
| 16 | 14, 12, 15 | foeq123d 5497 | 
. . . . . . 7
 | 
| 17 | 16 | exbidv 1839 | 
. . . . . 6
 | 
| 18 | 13, 17 | anbi12d 473 | 
. . . . 5
 | 
| 19 | djueq1 7106 | 
. . . . . . 7
 | |
| 20 | foeq3 5478 | 
. . . . . . 7
 | |
| 21 | 15, 19, 20 | 3syl 17 | 
. . . . . 6
 | 
| 22 | 21 | exbidv 1839 | 
. . . . 5
 | 
| 23 | 18, 22 | imbi12d 234 | 
. . . 4
 | 
| 24 | ctssexmid.1 | 
. . . 4
 | |
| 25 | 6, 6, 23, 24 | vtocl2 2819 | 
. . 3
 | 
| 26 | 1, 11, 25 | mp2an 426 | 
. 2
 | 
| 27 | 4 | a1i 9 | 
. . . 4
 | 
| 28 | id 19 | 
. . . 4
 | |
| 29 | 27, 28 | fodjuomni 7215 | 
. . 3
 | 
| 30 | 29 | exlimiv 1612 | 
. 2
 | 
| 31 | biidd 172 | 
. . . . . 6
 | |
| 32 | 31 | elrab 2920 | 
. . . . 5
 | 
| 33 | 32 | simprbi 275 | 
. . . 4
 | 
| 34 | 33 | exlimiv 1612 | 
. . 3
 | 
| 35 | rabeq0 3480 | 
. . . 4
 | |
| 36 | peano1 4630 | 
. . . . 5
 | |
| 37 | elex2 2779 | 
. . . . 5
 | |
| 38 | r19.3rmv 3541 | 
. . . . 5
 | |
| 39 | 36, 37, 38 | mp2b 8 | 
. . . 4
 | 
| 40 | 35, 39 | sylbb2 138 | 
. . 3
 | 
| 41 | 34, 40 | orim12i 760 | 
. 2
 | 
| 42 | 26, 30, 41 | mp2b 8 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-1o 6474 df-2o 6475 df-map 6709 df-dju 7104 df-inl 7113 df-inr 7114 df-omni 7201 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |