| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ctssexmid | Unicode version | ||
| Description: The decidability condition in ctssdc 7241 is needed. More specifically, ctssdc 7241 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) |
| Ref | Expression |
|---|---|
| ctssexmid.1 |
|
| ctssexmid.lpo |
|
| Ref | Expression |
|---|---|
| ctssexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3286 |
. . 3
| |
| 2 | f1oi 5583 |
. . . 4
| |
| 3 | f1ofo 5551 |
. . . 4
| |
| 4 | ctssexmid.lpo |
. . . . . . . 8
| |
| 5 | 4 | elexi 2789 |
. . . . . . 7
|
| 6 | 5 | rabex 4204 |
. . . . . 6
|
| 7 | resiexg 5023 |
. . . . . 6
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . 5
|
| 9 | foeq1 5516 |
. . . . 5
| |
| 10 | 8, 9 | spcev 2875 |
. . . 4
|
| 11 | 2, 3, 10 | mp2b 8 |
. . 3
|
| 12 | simpr 110 |
. . . . . . 7
| |
| 13 | 12 | sseq1d 3230 |
. . . . . 6
|
| 14 | eqidd 2208 |
. . . . . . . 8
| |
| 15 | simpl 109 |
. . . . . . . 8
| |
| 16 | 14, 12, 15 | foeq123d 5537 |
. . . . . . 7
|
| 17 | 16 | exbidv 1849 |
. . . . . 6
|
| 18 | 13, 17 | anbi12d 473 |
. . . . 5
|
| 19 | djueq1 7168 |
. . . . . . 7
| |
| 20 | foeq3 5518 |
. . . . . . 7
| |
| 21 | 15, 19, 20 | 3syl 17 |
. . . . . 6
|
| 22 | 21 | exbidv 1849 |
. . . . 5
|
| 23 | 18, 22 | imbi12d 234 |
. . . 4
|
| 24 | ctssexmid.1 |
. . . 4
| |
| 25 | 6, 6, 23, 24 | vtocl2 2833 |
. . 3
|
| 26 | 1, 11, 25 | mp2an 426 |
. 2
|
| 27 | 4 | a1i 9 |
. . . 4
|
| 28 | id 19 |
. . . 4
| |
| 29 | 27, 28 | fodjuomni 7277 |
. . 3
|
| 30 | 29 | exlimiv 1622 |
. 2
|
| 31 | biidd 172 |
. . . . . 6
| |
| 32 | 31 | elrab 2936 |
. . . . 5
|
| 33 | 32 | simprbi 275 |
. . . 4
|
| 34 | 33 | exlimiv 1622 |
. . 3
|
| 35 | rabeq0 3498 |
. . . 4
| |
| 36 | peano1 4660 |
. . . . 5
| |
| 37 | elex2 2793 |
. . . . 5
| |
| 38 | r19.3rmv 3559 |
. . . . 5
| |
| 39 | 36, 37, 38 | mp2b 8 |
. . . 4
|
| 40 | 35, 39 | sylbb2 138 |
. . 3
|
| 41 | 34, 40 | orim12i 761 |
. 2
|
| 42 | 26, 30, 41 | mp2b 8 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-1o 6525 df-2o 6526 df-map 6760 df-dju 7166 df-inl 7175 df-inr 7176 df-omni 7263 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |