Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctssexmid | Unicode version |
Description: The decidability condition in ctssdc 7090 is needed. More specifically, ctssdc 7090 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) |
Ref | Expression |
---|---|
ctssexmid.1 | ⊔ |
ctssexmid.lpo | Omni |
Ref | Expression |
---|---|
ctssexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3232 | . . 3 | |
2 | f1oi 5480 | . . . 4 | |
3 | f1ofo 5449 | . . . 4 | |
4 | ctssexmid.lpo | . . . . . . . 8 Omni | |
5 | 4 | elexi 2742 | . . . . . . 7 |
6 | 5 | rabex 4133 | . . . . . 6 |
7 | resiexg 4936 | . . . . . 6 | |
8 | 6, 7 | ax-mp 5 | . . . . 5 |
9 | foeq1 5416 | . . . . 5 | |
10 | 8, 9 | spcev 2825 | . . . 4 |
11 | 2, 3, 10 | mp2b 8 | . . 3 |
12 | simpr 109 | . . . . . . 7 | |
13 | 12 | sseq1d 3176 | . . . . . 6 |
14 | eqidd 2171 | . . . . . . . 8 | |
15 | simpl 108 | . . . . . . . 8 | |
16 | 14, 12, 15 | foeq123d 5436 | . . . . . . 7 |
17 | 16 | exbidv 1818 | . . . . . 6 |
18 | 13, 17 | anbi12d 470 | . . . . 5 |
19 | djueq1 7017 | . . . . . . 7 ⊔ ⊔ | |
20 | foeq3 5418 | . . . . . . 7 ⊔ ⊔ ⊔ ⊔ | |
21 | 15, 19, 20 | 3syl 17 | . . . . . 6 ⊔ ⊔ |
22 | 21 | exbidv 1818 | . . . . 5 ⊔ ⊔ |
23 | 18, 22 | imbi12d 233 | . . . 4 ⊔ ⊔ |
24 | ctssexmid.1 | . . . 4 ⊔ | |
25 | 6, 6, 23, 24 | vtocl2 2785 | . . 3 ⊔ |
26 | 1, 11, 25 | mp2an 424 | . 2 ⊔ |
27 | 4 | a1i 9 | . . . 4 ⊔ Omni |
28 | id 19 | . . . 4 ⊔ ⊔ | |
29 | 27, 28 | fodjuomni 7125 | . . 3 ⊔ |
30 | 29 | exlimiv 1591 | . 2 ⊔ |
31 | biidd 171 | . . . . . 6 | |
32 | 31 | elrab 2886 | . . . . 5 |
33 | 32 | simprbi 273 | . . . 4 |
34 | 33 | exlimiv 1591 | . . 3 |
35 | rabeq0 3444 | . . . 4 | |
36 | peano1 4578 | . . . . 5 | |
37 | elex2 2746 | . . . . 5 | |
38 | r19.3rmv 3505 | . . . . 5 | |
39 | 36, 37, 38 | mp2b 8 | . . . 4 |
40 | 35, 39 | sylbb2 137 | . . 3 |
41 | 34, 40 | orim12i 754 | . 2 |
42 | 26, 30, 41 | mp2b 8 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wex 1485 wcel 2141 wral 2448 crab 2452 cvv 2730 wss 3121 c0 3414 cid 4273 com 4574 cres 4613 wfo 5196 wf1o 5197 c1o 6388 ⊔ cdju 7014 Omnicomni 7110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-1o 6395 df-2o 6396 df-map 6628 df-dju 7015 df-inl 7024 df-inr 7025 df-omni 7111 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |