Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctssexmid | Unicode version |
Description: The decidability condition in ctssdc 7078 is needed. More specifically, ctssdc 7078 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) |
Ref | Expression |
---|---|
ctssexmid.1 | ⊔ |
ctssexmid.lpo | Omni |
Ref | Expression |
---|---|
ctssexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3227 | . . 3 | |
2 | f1oi 5470 | . . . 4 | |
3 | f1ofo 5439 | . . . 4 | |
4 | ctssexmid.lpo | . . . . . . . 8 Omni | |
5 | 4 | elexi 2738 | . . . . . . 7 |
6 | 5 | rabex 4126 | . . . . . 6 |
7 | resiexg 4929 | . . . . . 6 | |
8 | 6, 7 | ax-mp 5 | . . . . 5 |
9 | foeq1 5406 | . . . . 5 | |
10 | 8, 9 | spcev 2821 | . . . 4 |
11 | 2, 3, 10 | mp2b 8 | . . 3 |
12 | simpr 109 | . . . . . . 7 | |
13 | 12 | sseq1d 3171 | . . . . . 6 |
14 | eqidd 2166 | . . . . . . . 8 | |
15 | simpl 108 | . . . . . . . 8 | |
16 | 14, 12, 15 | foeq123d 5426 | . . . . . . 7 |
17 | 16 | exbidv 1813 | . . . . . 6 |
18 | 13, 17 | anbi12d 465 | . . . . 5 |
19 | djueq1 7005 | . . . . . . 7 ⊔ ⊔ | |
20 | foeq3 5408 | . . . . . . 7 ⊔ ⊔ ⊔ ⊔ | |
21 | 15, 19, 20 | 3syl 17 | . . . . . 6 ⊔ ⊔ |
22 | 21 | exbidv 1813 | . . . . 5 ⊔ ⊔ |
23 | 18, 22 | imbi12d 233 | . . . 4 ⊔ ⊔ |
24 | ctssexmid.1 | . . . 4 ⊔ | |
25 | 6, 6, 23, 24 | vtocl2 2781 | . . 3 ⊔ |
26 | 1, 11, 25 | mp2an 423 | . 2 ⊔ |
27 | 4 | a1i 9 | . . . 4 ⊔ Omni |
28 | id 19 | . . . 4 ⊔ ⊔ | |
29 | 27, 28 | fodjuomni 7113 | . . 3 ⊔ |
30 | 29 | exlimiv 1586 | . 2 ⊔ |
31 | biidd 171 | . . . . . 6 | |
32 | 31 | elrab 2882 | . . . . 5 |
33 | 32 | simprbi 273 | . . . 4 |
34 | 33 | exlimiv 1586 | . . 3 |
35 | rabeq0 3438 | . . . 4 | |
36 | peano1 4571 | . . . . 5 | |
37 | elex2 2742 | . . . . 5 | |
38 | r19.3rmv 3499 | . . . . 5 | |
39 | 36, 37, 38 | mp2b 8 | . . . 4 |
40 | 35, 39 | sylbb2 137 | . . 3 |
41 | 34, 40 | orim12i 749 | . 2 |
42 | 26, 30, 41 | mp2b 8 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wex 1480 wcel 2136 wral 2444 crab 2448 cvv 2726 wss 3116 c0 3409 cid 4266 com 4567 cres 4606 wfo 5186 wf1o 5187 c1o 6377 ⊔ cdju 7002 Omnicomni 7098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-1o 6384 df-2o 6385 df-map 6616 df-dju 7003 df-inl 7012 df-inr 7013 df-omni 7099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |