ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssexmid Unicode version

Theorem ctssexmid 7278
Description: The decidability condition in ctssdc 7241 is needed. More specifically, ctssdc 7241 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
Hypotheses
Ref Expression
ctssexmid.1  |-  ( ( y  C_  om  /\  E. f  f : y
-onto-> x )  ->  E. f 
f : om -onto-> (
x 1o ) )
ctssexmid.lpo  |-  om  e. Omni
Assertion
Ref Expression
ctssexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, f, x, y

Proof of Theorem ctssexmid
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3286 . . 3  |-  { z  e.  om  |  ph }  C_  om
2 f1oi 5583 . . . 4  |-  (  _I  |`  { z  e.  om  |  ph } ) : { z  e.  om  |  ph } -1-1-onto-> { z  e.  om  |  ph }
3 f1ofo 5551 . . . 4  |-  ( (  _I  |`  { z  e.  om  |  ph }
) : { z  e.  om  |  ph }
-1-1-onto-> { z  e.  om  |  ph }  ->  (  _I  |`  { z  e. 
om  |  ph }
) : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } )
4 ctssexmid.lpo . . . . . . . 8  |-  om  e. Omni
54elexi 2789 . . . . . . 7  |-  om  e.  _V
65rabex 4204 . . . . . 6  |-  { z  e.  om  |  ph }  e.  _V
7 resiexg 5023 . . . . . 6  |-  ( { z  e.  om  |  ph }  e.  _V  ->  (  _I  |`  { z  e.  om  |  ph }
)  e.  _V )
86, 7ax-mp 5 . . . . 5  |-  (  _I  |`  { z  e.  om  |  ph } )  e. 
_V
9 foeq1 5516 . . . . 5  |-  ( f  =  (  _I  |`  { z  e.  om  |  ph } )  ->  (
f : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph }  <->  (  _I  |` 
{ z  e.  om  |  ph } ) : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } ) )
108, 9spcev 2875 . . . 4  |-  ( (  _I  |`  { z  e.  om  |  ph }
) : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph }  ->  E. f 
f : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } )
112, 3, 10mp2b 8 . . 3  |-  E. f 
f : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph }
12 simpr 110 . . . . . . 7  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  y  =  { z  e.  om  |  ph } )
1312sseq1d 3230 . . . . . 6  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  (
y  C_  om  <->  { z  e.  om  |  ph }  C_ 
om ) )
14 eqidd 2208 . . . . . . . 8  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  f  =  f )
15 simpl 109 . . . . . . . 8  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  x  =  { z  e.  om  |  ph } )
1614, 12, 15foeq123d 5537 . . . . . . 7  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  (
f : y -onto-> x  <-> 
f : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } ) )
1716exbidv 1849 . . . . . 6  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  ( E. f  f :
y -onto-> x  <->  E. f  f : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } ) )
1813, 17anbi12d 473 . . . . 5  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  (
( y  C_  om  /\  E. f  f : y
-onto-> x )  <->  ( {
z  e.  om  |  ph }  C_  om  /\  E. f  f : {
z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } ) ) )
19 djueq1 7168 . . . . . . 7  |-  ( x  =  { z  e. 
om  |  ph }  ->  ( x 1o )  =  ( { z  e.  om  |  ph } 1o ) )
20 foeq3 5518 . . . . . . 7  |-  ( ( x 1o )  =  ( { z  e.  om  |  ph } 1o )  ->  ( f : om -onto->
( x 1o )  <->  f : om -onto-> ( { z  e.  om  |  ph } 1o ) ) )
2115, 19, 203syl 17 . . . . . 6  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  (
f : om -onto-> (
x 1o )  <->  f : om -onto-> ( { z  e.  om  |  ph } 1o ) ) )
2221exbidv 1849 . . . . 5  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  ( E. f  f : om -onto-> ( x 1o ) 
<->  E. f  f : om -onto-> ( { z  e.  om  |  ph } 1o ) ) )
2318, 22imbi12d 234 . . . 4  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  (
( ( y  C_  om 
/\  E. f  f : y -onto-> x )  ->  E. f  f : om -onto-> ( x 1o ) )  <->  ( ( { z  e.  om  |  ph }  C_  om  /\  E. f  f : {
z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } )  ->  E. f  f : om -onto-> ( { z  e.  om  |  ph } 1o ) ) ) )
24 ctssexmid.1 . . . 4  |-  ( ( y  C_  om  /\  E. f  f : y
-onto-> x )  ->  E. f 
f : om -onto-> (
x 1o ) )
256, 6, 23, 24vtocl2 2833 . . 3  |-  ( ( { z  e.  om  |  ph }  C_  om  /\  E. f  f : {
z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } )  ->  E. f  f : om -onto-> ( { z  e.  om  |  ph } 1o ) )
261, 11, 25mp2an 426 . 2  |-  E. f 
f : om -onto-> ( { z  e.  om  |  ph } 1o )
274a1i 9 . . . 4  |-  ( f : om -onto-> ( { z  e.  om  |  ph } 1o )  ->  om  e. Omni )
28 id 19 . . . 4  |-  ( f : om -onto-> ( { z  e.  om  |  ph } 1o )  ->  f : om -onto-> ( { z  e.  om  |  ph } 1o ) )
2927, 28fodjuomni 7277 . . 3  |-  ( f : om -onto-> ( { z  e.  om  |  ph } 1o )  ->  ( E. w  w  e.  { z  e.  om  |  ph }  \/  { z  e.  om  |  ph }  =  (/) ) )
3029exlimiv 1622 . 2  |-  ( E. f  f : om -onto->
( { z  e. 
om  |  ph } 1o )  ->  ( E. w  w  e.  { z  e.  om  |  ph }  \/  { z  e.  om  |  ph }  =  (/) ) )
31 biidd 172 . . . . . 6  |-  ( z  =  w  ->  ( ph 
<-> 
ph ) )
3231elrab 2936 . . . . 5  |-  ( w  e.  { z  e. 
om  |  ph }  <->  ( w  e.  om  /\  ph ) )
3332simprbi 275 . . . 4  |-  ( w  e.  { z  e. 
om  |  ph }  ->  ph )
3433exlimiv 1622 . . 3  |-  ( E. w  w  e.  {
z  e.  om  |  ph }  ->  ph )
35 rabeq0 3498 . . . 4  |-  ( { z  e.  om  |  ph }  =  (/)  <->  A. z  e.  om  -.  ph )
36 peano1 4660 . . . . 5  |-  (/)  e.  om
37 elex2 2793 . . . . 5  |-  ( (/)  e.  om  ->  E. u  u  e.  om )
38 r19.3rmv 3559 . . . . 5  |-  ( E. u  u  e.  om  ->  ( -.  ph  <->  A. z  e.  om  -.  ph )
)
3936, 37, 38mp2b 8 . . . 4  |-  ( -. 
ph 
<-> 
A. z  e.  om  -.  ph )
4035, 39sylbb2 138 . . 3  |-  ( { z  e.  om  |  ph }  =  (/)  ->  -.  ph )
4134, 40orim12i 761 . 2  |-  ( ( E. w  w  e. 
{ z  e.  om  |  ph }  \/  {
z  e.  om  |  ph }  =  (/) )  -> 
( ph  \/  -.  ph ) )
4226, 30, 41mp2b 8 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776    C_ wss 3174   (/)c0 3468    _I cid 4353   omcom 4656    |` cres 4695   -onto->wfo 5288   -1-1-onto->wf1o 5289   1oc1o 6518   ⊔ cdju 7165  Omnicomni 7262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-1o 6525  df-2o 6526  df-map 6760  df-dju 7166  df-inl 7175  df-inr 7176  df-omni 7263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator