| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ctssexmid | Unicode version | ||
| Description: The decidability condition in ctssdc 7280 is needed. More specifically, ctssdc 7280 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) |
| Ref | Expression |
|---|---|
| ctssexmid.1 |
|
| ctssexmid.lpo |
|
| Ref | Expression |
|---|---|
| ctssexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 |
. . 3
| |
| 2 | f1oi 5611 |
. . . 4
| |
| 3 | f1ofo 5579 |
. . . 4
| |
| 4 | ctssexmid.lpo |
. . . . . . . 8
| |
| 5 | 4 | elexi 2812 |
. . . . . . 7
|
| 6 | 5 | rabex 4228 |
. . . . . 6
|
| 7 | resiexg 5050 |
. . . . . 6
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . 5
|
| 9 | foeq1 5544 |
. . . . 5
| |
| 10 | 8, 9 | spcev 2898 |
. . . 4
|
| 11 | 2, 3, 10 | mp2b 8 |
. . 3
|
| 12 | simpr 110 |
. . . . . . 7
| |
| 13 | 12 | sseq1d 3253 |
. . . . . 6
|
| 14 | eqidd 2230 |
. . . . . . . 8
| |
| 15 | simpl 109 |
. . . . . . . 8
| |
| 16 | 14, 12, 15 | foeq123d 5565 |
. . . . . . 7
|
| 17 | 16 | exbidv 1871 |
. . . . . 6
|
| 18 | 13, 17 | anbi12d 473 |
. . . . 5
|
| 19 | djueq1 7207 |
. . . . . . 7
| |
| 20 | foeq3 5546 |
. . . . . . 7
| |
| 21 | 15, 19, 20 | 3syl 17 |
. . . . . 6
|
| 22 | 21 | exbidv 1871 |
. . . . 5
|
| 23 | 18, 22 | imbi12d 234 |
. . . 4
|
| 24 | ctssexmid.1 |
. . . 4
| |
| 25 | 6, 6, 23, 24 | vtocl2 2856 |
. . 3
|
| 26 | 1, 11, 25 | mp2an 426 |
. 2
|
| 27 | 4 | a1i 9 |
. . . 4
|
| 28 | id 19 |
. . . 4
| |
| 29 | 27, 28 | fodjuomni 7316 |
. . 3
|
| 30 | 29 | exlimiv 1644 |
. 2
|
| 31 | biidd 172 |
. . . . . 6
| |
| 32 | 31 | elrab 2959 |
. . . . 5
|
| 33 | 32 | simprbi 275 |
. . . 4
|
| 34 | 33 | exlimiv 1644 |
. . 3
|
| 35 | rabeq0 3521 |
. . . 4
| |
| 36 | peano1 4686 |
. . . . 5
| |
| 37 | elex2 2816 |
. . . . 5
| |
| 38 | r19.3rmv 3582 |
. . . . 5
| |
| 39 | 36, 37, 38 | mp2b 8 |
. . . 4
|
| 40 | 35, 39 | sylbb2 138 |
. . 3
|
| 41 | 34, 40 | orim12i 764 |
. 2
|
| 42 | 26, 30, 41 | mp2b 8 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-1o 6562 df-2o 6563 df-map 6797 df-dju 7205 df-inl 7214 df-inr 7215 df-omni 7302 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |