| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syldanl | Unicode version | ||
| Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| syldanl.1 |
|
| syldanl.2 |
|
| Ref | Expression |
|---|---|
| syldanl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldanl.1 |
. . . 4
| |
| 2 | 1 | ex 115 |
. . 3
|
| 3 | 2 | imdistani 445 |
. 2
|
| 4 | syldanl.2 |
. 2
| |
| 5 | 3, 4 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: pw2f1odclem 6895 grplmulf1o 13206 grplactcnv 13234 |
| Copyright terms: Public domain | W3C validator |