Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syldanl | Unicode version |
Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
syldanl.1 | |
syldanl.2 |
Ref | Expression |
---|---|
syldanl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syldanl.1 | . . . 4 | |
2 | 1 | ex 115 | . . 3 |
3 | 2 | imdistani 445 | . 2 |
4 | syldanl.2 | . 2 | |
5 | 3, 4 | sylan 283 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: grplmulf1o 12800 grplactcnv 12828 |
Copyright terms: Public domain | W3C validator |