ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactcnv Unicode version

Theorem grplactcnv 12966
Description: The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grplact.1  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
grplact.2  |-  X  =  ( Base `  G
)
grplact.3  |-  .+  =  ( +g  `  G )
grplactcnv.4  |-  I  =  ( invg `  G )
Assertion
Ref Expression
grplactcnv  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( F `  A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( I `
 A ) ) ) )
Distinct variable groups:    g, a, A    G, a, g    I, a, g    .+ , a, g    X, a, g
Allowed substitution hints:    F( g, a)

Proof of Theorem grplactcnv
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . 3  |-  ( a  e.  X  |->  ( A 
.+  a ) )  =  ( a  e.  X  |->  ( A  .+  a ) )
2 grplact.2 . . . . 5  |-  X  =  ( Base `  G
)
3 grplact.3 . . . . 5  |-  .+  =  ( +g  `  G )
42, 3grpcl 12879 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  a  e.  X )  ->  ( A  .+  a
)  e.  X )
543expa 1203 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  a  e.  X
)  ->  ( A  .+  a )  e.  X
)
6 grplactcnv.4 . . . . 5  |-  I  =  ( invg `  G )
72, 6grpinvcl 12915 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( I `  A
)  e.  X )
82, 3grpcl 12879 . . . . 5  |-  ( ( G  e.  Grp  /\  ( I `  A
)  e.  X  /\  b  e.  X )  ->  ( ( I `  A )  .+  b
)  e.  X )
983expa 1203 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( I `  A
)  e.  X )  /\  b  e.  X
)  ->  ( (
I `  A )  .+  b )  e.  X
)
107, 9syldanl 449 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  b  e.  X
)  ->  ( (
I `  A )  .+  b )  e.  X
)
11 eqcom 2179 . . . . 5  |-  ( a  =  ( ( I `
 A )  .+  b )  <->  ( (
I `  A )  .+  b )  =  a )
12 eqid 2177 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
132, 3, 12, 6grplinv 12916 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( I `  A )  .+  A
)  =  ( 0g
`  G ) )
1413adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( I `  A )  .+  A
)  =  ( 0g
`  G ) )
1514oveq1d 5889 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( ( I `
 A )  .+  A )  .+  a
)  =  ( ( 0g `  G ) 
.+  a ) )
16 simpll 527 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  ->  G  e.  Grp )
177adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( I `  A
)  e.  X )
18 simplr 528 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  ->  A  e.  X )
19 simprl 529 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
a  e.  X )
202, 3grpass 12880 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( ( I `  A )  e.  X  /\  A  e.  X  /\  a  e.  X
) )  ->  (
( ( I `  A )  .+  A
)  .+  a )  =  ( ( I `
 A )  .+  ( A  .+  a ) ) )
2116, 17, 18, 19, 20syl13anc 1240 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( ( I `
 A )  .+  A )  .+  a
)  =  ( ( I `  A ) 
.+  ( A  .+  a ) ) )
222, 3, 12grplid 12900 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  a  e.  X )  ->  ( ( 0g `  G )  .+  a
)  =  a )
2322ad2ant2r 509 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( 0g `  G )  .+  a
)  =  a )
2415, 21, 233eqtr3rd 2219 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
a  =  ( ( I `  A ) 
.+  ( A  .+  a ) ) )
2524eqeq2d 2189 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( ( I `
 A )  .+  b )  =  a  <-> 
( ( I `  A )  .+  b
)  =  ( ( I `  A ) 
.+  ( A  .+  a ) ) ) )
2611, 25bitrid 192 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a  =  ( ( I `  A
)  .+  b )  <->  ( ( I `  A
)  .+  b )  =  ( ( I `
 A )  .+  ( A  .+  a ) ) ) )
27 simprr 531 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
b  e.  X )
285adantrr 479 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( A  .+  a
)  e.  X )
292, 3grplcan 12926 . . . . 5  |-  ( ( G  e.  Grp  /\  ( b  e.  X  /\  ( A  .+  a
)  e.  X  /\  ( I `  A
)  e.  X ) )  ->  ( (
( I `  A
)  .+  b )  =  ( ( I `
 A )  .+  ( A  .+  a ) )  <->  b  =  ( A  .+  a ) ) )
3016, 27, 28, 17, 29syl13anc 1240 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( ( I `
 A )  .+  b )  =  ( ( I `  A
)  .+  ( A  .+  a ) )  <->  b  =  ( A  .+  a ) ) )
3126, 30bitrd 188 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a  =  ( ( I `  A
)  .+  b )  <->  b  =  ( A  .+  a ) ) )
321, 5, 10, 31f1ocnv2d 6074 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( a  e.  X  |->  ( A  .+  a ) ) : X -1-1-onto-> X  /\  `' ( a  e.  X  |->  ( A  .+  a ) )  =  ( b  e.  X  |->  ( ( I `  A ) 
.+  b ) ) ) )
33 grplact.1 . . . . . 6  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
3433, 2grplactfval 12965 . . . . 5  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
3534adantl 277 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  A
)  =  ( a  e.  X  |->  ( A 
.+  a ) ) )
3635f1oeq1d 5456 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( F `  A ) : X -1-1-onto-> X  <->  ( a  e.  X  |->  ( A  .+  a ) ) : X -1-1-onto-> X ) )
3735cnveqd 4803 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( F `  A )  =  `' ( a  e.  X  |->  ( A  .+  a
) ) )
3833, 2grplactfval 12965 . . . . . 6  |-  ( ( I `  A )  e.  X  ->  ( F `  ( I `  A ) )  =  ( a  e.  X  |->  ( ( I `  A )  .+  a
) ) )
39 oveq2 5882 . . . . . . 7  |-  ( a  =  b  ->  (
( I `  A
)  .+  a )  =  ( ( I `
 A )  .+  b ) )
4039cbvmptv 4099 . . . . . 6  |-  ( a  e.  X  |->  ( ( I `  A ) 
.+  a ) )  =  ( b  e.  X  |->  ( ( I `
 A )  .+  b ) )
4138, 40eqtrdi 2226 . . . . 5  |-  ( ( I `  A )  e.  X  ->  ( F `  ( I `  A ) )  =  ( b  e.  X  |->  ( ( I `  A )  .+  b
) ) )
427, 41syl 14 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  (
I `  A )
)  =  ( b  e.  X  |->  ( ( I `  A ) 
.+  b ) ) )
4337, 42eqeq12d 2192 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( `' ( F `
 A )  =  ( F `  (
I `  A )
)  <->  `' ( a  e.  X  |->  ( A  .+  a ) )  =  ( b  e.  X  |->  ( ( I `  A )  .+  b
) ) ) )
4436, 43anbi12d 473 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( F `
 A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( I `  A
) ) )  <->  ( (
a  e.  X  |->  ( A  .+  a ) ) : X -1-1-onto-> X  /\  `' ( a  e.  X  |->  ( A  .+  a ) )  =  ( b  e.  X  |->  ( ( I `  A )  .+  b
) ) ) ) )
4532, 44mpbird 167 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( F `  A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( I `
 A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    |-> cmpt 4064   `'ccnv 4625   -1-1-onto->wf1o 5215   ` cfv 5216  (class class class)co 5874   Basecbs 12456   +g cplusg 12530   0gc0g 12699   Grpcgrp 12871   invgcminusg 12872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-inn 8918  df-2 8976  df-ndx 12459  df-slot 12460  df-base 12462  df-plusg 12543  df-0g 12701  df-mgm 12769  df-sgrp 12802  df-mnd 12812  df-grp 12874  df-minusg 12875
This theorem is referenced by:  grplactf1o  12967  eqglact  13077
  Copyright terms: Public domain W3C validator