| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplactcnv | Unicode version | ||
| Description: The left group action of
element |
| Ref | Expression |
|---|---|
| grplact.1 |
|
| grplact.2 |
|
| grplact.3 |
|
| grplactcnv.4 |
|
| Ref | Expression |
|---|---|
| grplactcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . 3
| |
| 2 | grplact.2 |
. . . . 5
| |
| 3 | grplact.3 |
. . . . 5
| |
| 4 | 2, 3 | grpcl 13455 |
. . . 4
|
| 5 | 4 | 3expa 1206 |
. . 3
|
| 6 | grplactcnv.4 |
. . . . 5
| |
| 7 | 2, 6 | grpinvcl 13495 |
. . . 4
|
| 8 | 2, 3 | grpcl 13455 |
. . . . 5
|
| 9 | 8 | 3expa 1206 |
. . . 4
|
| 10 | 7, 9 | syldanl 449 |
. . 3
|
| 11 | eqcom 2209 |
. . . . 5
| |
| 12 | eqid 2207 |
. . . . . . . . . 10
| |
| 13 | 2, 3, 12, 6 | grplinv 13497 |
. . . . . . . . 9
|
| 14 | 13 | adantr 276 |
. . . . . . . 8
|
| 15 | 14 | oveq1d 5982 |
. . . . . . 7
|
| 16 | simpll 527 |
. . . . . . . 8
| |
| 17 | 7 | adantr 276 |
. . . . . . . 8
|
| 18 | simplr 528 |
. . . . . . . 8
| |
| 19 | simprl 529 |
. . . . . . . 8
| |
| 20 | 2, 3 | grpass 13456 |
. . . . . . . 8
|
| 21 | 16, 17, 18, 19, 20 | syl13anc 1252 |
. . . . . . 7
|
| 22 | 2, 3, 12 | grplid 13478 |
. . . . . . . 8
|
| 23 | 22 | ad2ant2r 509 |
. . . . . . 7
|
| 24 | 15, 21, 23 | 3eqtr3rd 2249 |
. . . . . 6
|
| 25 | 24 | eqeq2d 2219 |
. . . . 5
|
| 26 | 11, 25 | bitrid 192 |
. . . 4
|
| 27 | simprr 531 |
. . . . 5
| |
| 28 | 5 | adantrr 479 |
. . . . 5
|
| 29 | 2, 3 | grplcan 13509 |
. . . . 5
|
| 30 | 16, 27, 28, 17, 29 | syl13anc 1252 |
. . . 4
|
| 31 | 26, 30 | bitrd 188 |
. . 3
|
| 32 | 1, 5, 10, 31 | f1ocnv2d 6173 |
. 2
|
| 33 | grplact.1 |
. . . . . 6
| |
| 34 | 33, 2 | grplactfval 13548 |
. . . . 5
|
| 35 | 34 | adantl 277 |
. . . 4
|
| 36 | 35 | f1oeq1d 5539 |
. . 3
|
| 37 | 35 | cnveqd 4872 |
. . . 4
|
| 38 | 33, 2 | grplactfval 13548 |
. . . . . 6
|
| 39 | oveq2 5975 |
. . . . . . 7
| |
| 40 | 39 | cbvmptv 4156 |
. . . . . 6
|
| 41 | 38, 40 | eqtrdi 2256 |
. . . . 5
|
| 42 | 7, 41 | syl 14 |
. . . 4
|
| 43 | 37, 42 | eqeq12d 2222 |
. . 3
|
| 44 | 36, 43 | anbi12d 473 |
. 2
|
| 45 | 32, 44 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 |
| This theorem is referenced by: grplactf1o 13550 eqglact 13676 |
| Copyright terms: Public domain | W3C validator |