ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactcnv Unicode version

Theorem grplactcnv 13174
Description: The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grplact.1  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
grplact.2  |-  X  =  ( Base `  G
)
grplact.3  |-  .+  =  ( +g  `  G )
grplactcnv.4  |-  I  =  ( invg `  G )
Assertion
Ref Expression
grplactcnv  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( F `  A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( I `
 A ) ) ) )
Distinct variable groups:    g, a, A    G, a, g    I, a, g    .+ , a, g    X, a, g
Allowed substitution hints:    F( g, a)

Proof of Theorem grplactcnv
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3  |-  ( a  e.  X  |->  ( A 
.+  a ) )  =  ( a  e.  X  |->  ( A  .+  a ) )
2 grplact.2 . . . . 5  |-  X  =  ( Base `  G
)
3 grplact.3 . . . . 5  |-  .+  =  ( +g  `  G )
42, 3grpcl 13080 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  a  e.  X )  ->  ( A  .+  a
)  e.  X )
543expa 1205 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  a  e.  X
)  ->  ( A  .+  a )  e.  X
)
6 grplactcnv.4 . . . . 5  |-  I  =  ( invg `  G )
72, 6grpinvcl 13120 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( I `  A
)  e.  X )
82, 3grpcl 13080 . . . . 5  |-  ( ( G  e.  Grp  /\  ( I `  A
)  e.  X  /\  b  e.  X )  ->  ( ( I `  A )  .+  b
)  e.  X )
983expa 1205 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( I `  A
)  e.  X )  /\  b  e.  X
)  ->  ( (
I `  A )  .+  b )  e.  X
)
107, 9syldanl 449 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  b  e.  X
)  ->  ( (
I `  A )  .+  b )  e.  X
)
11 eqcom 2195 . . . . 5  |-  ( a  =  ( ( I `
 A )  .+  b )  <->  ( (
I `  A )  .+  b )  =  a )
12 eqid 2193 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
132, 3, 12, 6grplinv 13122 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( I `  A )  .+  A
)  =  ( 0g
`  G ) )
1413adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( I `  A )  .+  A
)  =  ( 0g
`  G ) )
1514oveq1d 5933 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( ( I `
 A )  .+  A )  .+  a
)  =  ( ( 0g `  G ) 
.+  a ) )
16 simpll 527 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  ->  G  e.  Grp )
177adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( I `  A
)  e.  X )
18 simplr 528 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  ->  A  e.  X )
19 simprl 529 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
a  e.  X )
202, 3grpass 13081 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( ( I `  A )  e.  X  /\  A  e.  X  /\  a  e.  X
) )  ->  (
( ( I `  A )  .+  A
)  .+  a )  =  ( ( I `
 A )  .+  ( A  .+  a ) ) )
2116, 17, 18, 19, 20syl13anc 1251 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( ( I `
 A )  .+  A )  .+  a
)  =  ( ( I `  A ) 
.+  ( A  .+  a ) ) )
222, 3, 12grplid 13103 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  a  e.  X )  ->  ( ( 0g `  G )  .+  a
)  =  a )
2322ad2ant2r 509 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( 0g `  G )  .+  a
)  =  a )
2415, 21, 233eqtr3rd 2235 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
a  =  ( ( I `  A ) 
.+  ( A  .+  a ) ) )
2524eqeq2d 2205 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( ( I `
 A )  .+  b )  =  a  <-> 
( ( I `  A )  .+  b
)  =  ( ( I `  A ) 
.+  ( A  .+  a ) ) ) )
2611, 25bitrid 192 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a  =  ( ( I `  A
)  .+  b )  <->  ( ( I `  A
)  .+  b )  =  ( ( I `
 A )  .+  ( A  .+  a ) ) ) )
27 simprr 531 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
b  e.  X )
285adantrr 479 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( A  .+  a
)  e.  X )
292, 3grplcan 13134 . . . . 5  |-  ( ( G  e.  Grp  /\  ( b  e.  X  /\  ( A  .+  a
)  e.  X  /\  ( I `  A
)  e.  X ) )  ->  ( (
( I `  A
)  .+  b )  =  ( ( I `
 A )  .+  ( A  .+  a ) )  <->  b  =  ( A  .+  a ) ) )
3016, 27, 28, 17, 29syl13anc 1251 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( ( I `
 A )  .+  b )  =  ( ( I `  A
)  .+  ( A  .+  a ) )  <->  b  =  ( A  .+  a ) ) )
3126, 30bitrd 188 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a  =  ( ( I `  A
)  .+  b )  <->  b  =  ( A  .+  a ) ) )
321, 5, 10, 31f1ocnv2d 6122 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( a  e.  X  |->  ( A  .+  a ) ) : X -1-1-onto-> X  /\  `' ( a  e.  X  |->  ( A  .+  a ) )  =  ( b  e.  X  |->  ( ( I `  A ) 
.+  b ) ) ) )
33 grplact.1 . . . . . 6  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
3433, 2grplactfval 13173 . . . . 5  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
3534adantl 277 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  A
)  =  ( a  e.  X  |->  ( A 
.+  a ) ) )
3635f1oeq1d 5495 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( F `  A ) : X -1-1-onto-> X  <->  ( a  e.  X  |->  ( A  .+  a ) ) : X -1-1-onto-> X ) )
3735cnveqd 4838 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( F `  A )  =  `' ( a  e.  X  |->  ( A  .+  a
) ) )
3833, 2grplactfval 13173 . . . . . 6  |-  ( ( I `  A )  e.  X  ->  ( F `  ( I `  A ) )  =  ( a  e.  X  |->  ( ( I `  A )  .+  a
) ) )
39 oveq2 5926 . . . . . . 7  |-  ( a  =  b  ->  (
( I `  A
)  .+  a )  =  ( ( I `
 A )  .+  b ) )
4039cbvmptv 4125 . . . . . 6  |-  ( a  e.  X  |->  ( ( I `  A ) 
.+  a ) )  =  ( b  e.  X  |->  ( ( I `
 A )  .+  b ) )
4138, 40eqtrdi 2242 . . . . 5  |-  ( ( I `  A )  e.  X  ->  ( F `  ( I `  A ) )  =  ( b  e.  X  |->  ( ( I `  A )  .+  b
) ) )
427, 41syl 14 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  (
I `  A )
)  =  ( b  e.  X  |->  ( ( I `  A ) 
.+  b ) ) )
4337, 42eqeq12d 2208 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( `' ( F `
 A )  =  ( F `  (
I `  A )
)  <->  `' ( a  e.  X  |->  ( A  .+  a ) )  =  ( b  e.  X  |->  ( ( I `  A )  .+  b
) ) ) )
4436, 43anbi12d 473 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( F `
 A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( I `  A
) ) )  <->  ( (
a  e.  X  |->  ( A  .+  a ) ) : X -1-1-onto-> X  /\  `' ( a  e.  X  |->  ( A  .+  a ) )  =  ( b  e.  X  |->  ( ( I `  A )  .+  b
) ) ) ) )
4532, 44mpbird 167 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( F `  A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( I `
 A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    |-> cmpt 4090   `'ccnv 4658   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Grpcgrp 13072   invgcminusg 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076
This theorem is referenced by:  grplactf1o  13175  eqglact  13295
  Copyright terms: Public domain W3C validator