| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplactcnv | Unicode version | ||
| Description: The left group action of
element |
| Ref | Expression |
|---|---|
| grplact.1 |
|
| grplact.2 |
|
| grplact.3 |
|
| grplactcnv.4 |
|
| Ref | Expression |
|---|---|
| grplactcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | grplact.2 |
. . . . 5
| |
| 3 | grplact.3 |
. . . . 5
| |
| 4 | 2, 3 | grpcl 13541 |
. . . 4
|
| 5 | 4 | 3expa 1227 |
. . 3
|
| 6 | grplactcnv.4 |
. . . . 5
| |
| 7 | 2, 6 | grpinvcl 13581 |
. . . 4
|
| 8 | 2, 3 | grpcl 13541 |
. . . . 5
|
| 9 | 8 | 3expa 1227 |
. . . 4
|
| 10 | 7, 9 | syldanl 449 |
. . 3
|
| 11 | eqcom 2231 |
. . . . 5
| |
| 12 | eqid 2229 |
. . . . . . . . . 10
| |
| 13 | 2, 3, 12, 6 | grplinv 13583 |
. . . . . . . . 9
|
| 14 | 13 | adantr 276 |
. . . . . . . 8
|
| 15 | 14 | oveq1d 6016 |
. . . . . . 7
|
| 16 | simpll 527 |
. . . . . . . 8
| |
| 17 | 7 | adantr 276 |
. . . . . . . 8
|
| 18 | simplr 528 |
. . . . . . . 8
| |
| 19 | simprl 529 |
. . . . . . . 8
| |
| 20 | 2, 3 | grpass 13542 |
. . . . . . . 8
|
| 21 | 16, 17, 18, 19, 20 | syl13anc 1273 |
. . . . . . 7
|
| 22 | 2, 3, 12 | grplid 13564 |
. . . . . . . 8
|
| 23 | 22 | ad2ant2r 509 |
. . . . . . 7
|
| 24 | 15, 21, 23 | 3eqtr3rd 2271 |
. . . . . 6
|
| 25 | 24 | eqeq2d 2241 |
. . . . 5
|
| 26 | 11, 25 | bitrid 192 |
. . . 4
|
| 27 | simprr 531 |
. . . . 5
| |
| 28 | 5 | adantrr 479 |
. . . . 5
|
| 29 | 2, 3 | grplcan 13595 |
. . . . 5
|
| 30 | 16, 27, 28, 17, 29 | syl13anc 1273 |
. . . 4
|
| 31 | 26, 30 | bitrd 188 |
. . 3
|
| 32 | 1, 5, 10, 31 | f1ocnv2d 6210 |
. 2
|
| 33 | grplact.1 |
. . . . . 6
| |
| 34 | 33, 2 | grplactfval 13634 |
. . . . 5
|
| 35 | 34 | adantl 277 |
. . . 4
|
| 36 | 35 | f1oeq1d 5567 |
. . 3
|
| 37 | 35 | cnveqd 4898 |
. . . 4
|
| 38 | 33, 2 | grplactfval 13634 |
. . . . . 6
|
| 39 | oveq2 6009 |
. . . . . . 7
| |
| 40 | 39 | cbvmptv 4180 |
. . . . . 6
|
| 41 | 38, 40 | eqtrdi 2278 |
. . . . 5
|
| 42 | 7, 41 | syl 14 |
. . . 4
|
| 43 | 37, 42 | eqeq12d 2244 |
. . 3
|
| 44 | 36, 43 | anbi12d 473 |
. 2
|
| 45 | 32, 44 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 |
| This theorem is referenced by: grplactf1o 13636 eqglact 13762 |
| Copyright terms: Public domain | W3C validator |