Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grplactcnv | Unicode version |
Description: The left group action of element of group maps the underlying set of one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
grplact.1 | |
grplact.2 | |
grplact.3 | |
grplactcnv.4 |
Ref | Expression |
---|---|
grplactcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2171 | . . 3 | |
2 | grplact.2 | . . . . 5 | |
3 | grplact.3 | . . . . 5 | |
4 | 2, 3 | grpcl 12738 | . . . 4 |
5 | 4 | 3expa 1199 | . . 3 |
6 | grplactcnv.4 | . . . . 5 | |
7 | 2, 6 | grpinvcl 12773 | . . . 4 |
8 | 2, 3 | grpcl 12738 | . . . . 5 |
9 | 8 | 3expa 1199 | . . . 4 |
10 | 7, 9 | syldanl 447 | . . 3 |
11 | eqcom 2173 | . . . . 5 | |
12 | eqid 2171 | . . . . . . . . . 10 | |
13 | 2, 3, 12, 6 | grplinv 12774 | . . . . . . . . 9 |
14 | 13 | adantr 274 | . . . . . . . 8 |
15 | 14 | oveq1d 5872 | . . . . . . 7 |
16 | simpll 525 | . . . . . . . 8 | |
17 | 7 | adantr 274 | . . . . . . . 8 |
18 | simplr 526 | . . . . . . . 8 | |
19 | simprl 527 | . . . . . . . 8 | |
20 | 2, 3 | grpass 12739 | . . . . . . . 8 |
21 | 16, 17, 18, 19, 20 | syl13anc 1236 | . . . . . . 7 |
22 | 2, 3, 12 | grplid 12758 | . . . . . . . 8 |
23 | 22 | ad2ant2r 507 | . . . . . . 7 |
24 | 15, 21, 23 | 3eqtr3rd 2213 | . . . . . 6 |
25 | 24 | eqeq2d 2183 | . . . . 5 |
26 | 11, 25 | bitrid 191 | . . . 4 |
27 | simprr 528 | . . . . 5 | |
28 | 5 | adantrr 477 | . . . . 5 |
29 | 2, 3 | grplcan 12783 | . . . . 5 |
30 | 16, 27, 28, 17, 29 | syl13anc 1236 | . . . 4 |
31 | 26, 30 | bitrd 187 | . . 3 |
32 | 1, 5, 10, 31 | f1ocnv2d 6057 | . 2 |
33 | grplact.1 | . . . . . 6 | |
34 | 33, 2 | grplactfval 12822 | . . . . 5 |
35 | 34 | adantl 275 | . . . 4 |
36 | 35 | f1oeq1d 5440 | . . 3 |
37 | 35 | cnveqd 4788 | . . . 4 |
38 | 33, 2 | grplactfval 12822 | . . . . . 6 |
39 | oveq2 5865 | . . . . . . 7 | |
40 | 39 | cbvmptv 4086 | . . . . . 6 |
41 | 38, 40 | eqtrdi 2220 | . . . . 5 |
42 | 7, 41 | syl 14 | . . . 4 |
43 | 37, 42 | eqeq12d 2186 | . . 3 |
44 | 36, 43 | anbi12d 471 | . 2 |
45 | 32, 44 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1349 wcel 2142 cmpt 4051 ccnv 4611 wf1o 5199 cfv 5200 (class class class)co 5857 cbs 12420 cplusg 12484 c0g 12618 cgrp 12730 cminusg 12731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-grp 12733 df-minusg 12734 |
This theorem is referenced by: grplactf1o 12824 |
Copyright terms: Public domain | W3C validator |