ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani Unicode version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
imdistani  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ch ) )

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21anc2li 329 . 2  |-  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) )
32imp 124 1  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1396  nfan1  1586  sbcof2  1832  difin  3409  difrab  3446  opthreg  4603  wessep  4625  fvelimab  5634  elfvmptrab  5674  dffo4  5727  dffo5  5728  ltaddpr  7709  recgt1i  8970  elnnnn0c  9339  elnnz1  9394  recnz  9465  eluz2b2  9723  elfzp12  10220  cos01gt0  12045  oddnn02np1  12162  reumodprminv  12547  sgrpidmndm  13223  elply2  15178  bj-charfundc  15706
  Copyright terms: Public domain W3C validator