ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani Unicode version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
imdistani  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ch ) )

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21anc2li 329 . 2  |-  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) )
32imp 124 1  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1388  nfan1  1578  sbcof2  1824  difin  3401  difrab  3438  opthreg  4593  wessep  4615  fvelimab  5620  elfvmptrab  5660  dffo4  5713  dffo5  5714  ltaddpr  7681  recgt1i  8942  elnnnn0c  9311  elnnz1  9366  recnz  9436  eluz2b2  9694  elfzp12  10191  cos01gt0  11945  oddnn02np1  12062  reumodprminv  12447  sgrpidmndm  13122  elply2  15055  bj-charfundc  15538
  Copyright terms: Public domain W3C validator