ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani Unicode version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
imdistani  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ch ) )

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21anc2li 329 . 2  |-  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) )
32imp 124 1  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1397  nfan1  1587  sbcof2  1833  difin  3410  difrab  3447  opthreg  4604  wessep  4626  fvelimab  5635  elfvmptrab  5675  dffo4  5728  dffo5  5729  ltaddpr  7710  recgt1i  8971  elnnnn0c  9340  elnnz1  9395  recnz  9466  eluz2b2  9724  elfzp12  10221  cos01gt0  12074  oddnn02np1  12191  reumodprminv  12576  sgrpidmndm  13252  elply2  15207  bj-charfundc  15744
  Copyright terms: Public domain W3C validator