ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani Unicode version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
imdistani  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ch ) )

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21anc2li 329 . 2  |-  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) )
32imp 124 1  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1419  nfan1  1610  sbcof2  1856  difin  3441  difrab  3478  opthreg  4647  wessep  4669  fvelimab  5689  elfvmptrab  5729  dffo4  5782  dffo5  5783  ltaddpr  7780  recgt1i  9041  elnnnn0c  9410  elnnz1  9465  recnz  9536  eluz2b2  9794  elfzp12  10291  pfxsuff1eqwrdeq  11226  cos01gt0  12269  oddnn02np1  12386  reumodprminv  12771  sgrpidmndm  13448  elply2  15403  bj-charfundc  16129
  Copyright terms: Public domain W3C validator