ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani Unicode version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
imdistani  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ch ) )

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21anc2li 329 . 2  |-  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) )
32imp 124 1  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1377  nfan1  1564  sbcof2  1810  difin  3374  difrab  3411  opthreg  4557  wessep  4579  fvelimab  5575  elfvmptrab  5614  dffo4  5667  dffo5  5668  ltaddpr  7599  recgt1i  8858  elnnnn0c  9224  elnnz1  9279  recnz  9349  eluz2b2  9606  elfzp12  10102  cos01gt0  11773  oddnn02np1  11888  reumodprminv  12256  sgrpidmndm  12827  bj-charfundc  14700
  Copyright terms: Public domain W3C validator