| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplmulf1o | Unicode version | ||
| Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| grplmulf1o.b |
|
| grplmulf1o.p |
|
| grplmulf1o.n |
|
| Ref | Expression |
|---|---|
| grplmulf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplmulf1o.n |
. 2
| |
| 2 | grplmulf1o.b |
. . . 4
| |
| 3 | grplmulf1o.p |
. . . 4
| |
| 4 | 2, 3 | grpcl 13425 |
. . 3
|
| 5 | 4 | 3expa 1206 |
. 2
|
| 6 | eqid 2206 |
. . . 4
| |
| 7 | 2, 6 | grpinvcl 13465 |
. . 3
|
| 8 | 2, 3 | grpcl 13425 |
. . . 4
|
| 9 | 8 | 3expa 1206 |
. . 3
|
| 10 | 7, 9 | syldanl 449 |
. 2
|
| 11 | eqcom 2208 |
. . 3
| |
| 12 | simpll 527 |
. . . . 5
| |
| 13 | 10 | adantrl 478 |
. . . . 5
|
| 14 | simprl 529 |
. . . . 5
| |
| 15 | simplr 528 |
. . . . 5
| |
| 16 | 2, 3 | grplcan 13479 |
. . . . 5
|
| 17 | 12, 13, 14, 15, 16 | syl13anc 1252 |
. . . 4
|
| 18 | eqid 2206 |
. . . . . . . . 9
| |
| 19 | 2, 3, 18, 6 | grprinv 13468 |
. . . . . . . 8
|
| 20 | 19 | adantr 276 |
. . . . . . 7
|
| 21 | 20 | oveq1d 5977 |
. . . . . 6
|
| 22 | 7 | adantr 276 |
. . . . . . 7
|
| 23 | simprr 531 |
. . . . . . 7
| |
| 24 | 2, 3 | grpass 13426 |
. . . . . . 7
|
| 25 | 12, 15, 22, 23, 24 | syl13anc 1252 |
. . . . . 6
|
| 26 | 2, 3, 18 | grplid 13448 |
. . . . . . 7
|
| 27 | 26 | ad2ant2rl 511 |
. . . . . 6
|
| 28 | 21, 25, 27 | 3eqtr3d 2247 |
. . . . 5
|
| 29 | 28 | eqeq1d 2215 |
. . . 4
|
| 30 | 17, 29 | bitr3d 190 |
. . 3
|
| 31 | 11, 30 | bitrid 192 |
. 2
|
| 32 | 1, 5, 10, 31 | f1o2d 6169 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-inn 9067 df-2 9125 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-grp 13420 df-minusg 13421 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |