Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grplmulf1o | Unicode version |
Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.) |
Ref | Expression |
---|---|
grplmulf1o.b | |
grplmulf1o.p | |
grplmulf1o.n |
Ref | Expression |
---|---|
grplmulf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplmulf1o.n | . 2 | |
2 | grplmulf1o.b | . . . 4 | |
3 | grplmulf1o.p | . . . 4 | |
4 | 2, 3 | grpcl 12743 | . . 3 |
5 | 4 | 3expa 1201 | . 2 |
6 | eqid 2173 | . . . 4 | |
7 | 2, 6 | grpinvcl 12778 | . . 3 |
8 | 2, 3 | grpcl 12743 | . . . 4 |
9 | 8 | 3expa 1201 | . . 3 |
10 | 7, 9 | syldanl 449 | . 2 |
11 | eqcom 2175 | . . 3 | |
12 | simpll 527 | . . . . 5 | |
13 | 10 | adantrl 478 | . . . . 5 |
14 | simprl 529 | . . . . 5 | |
15 | simplr 528 | . . . . 5 | |
16 | 2, 3 | grplcan 12788 | . . . . 5 |
17 | 12, 13, 14, 15, 16 | syl13anc 1238 | . . . 4 |
18 | eqid 2173 | . . . . . . . . 9 | |
19 | 2, 3, 18, 6 | grprinv 12780 | . . . . . . . 8 |
20 | 19 | adantr 276 | . . . . . . 7 |
21 | 20 | oveq1d 5877 | . . . . . 6 |
22 | 7 | adantr 276 | . . . . . . 7 |
23 | simprr 530 | . . . . . . 7 | |
24 | 2, 3 | grpass 12744 | . . . . . . 7 |
25 | 12, 15, 22, 23, 24 | syl13anc 1238 | . . . . . 6 |
26 | 2, 3, 18 | grplid 12763 | . . . . . . 7 |
27 | 26 | ad2ant2rl 511 | . . . . . 6 |
28 | 21, 25, 27 | 3eqtr3d 2214 | . . . . 5 |
29 | 28 | eqeq1d 2182 | . . . 4 |
30 | 17, 29 | bitr3d 191 | . . 3 |
31 | 11, 30 | bitrid 193 | . 2 |
32 | 1, 5, 10, 31 | f1o2d 6063 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1351 wcel 2144 cmpt 4056 wf1o 5204 cfv 5205 (class class class)co 5862 cbs 12425 cplusg 12489 c0g 12623 cgrp 12735 cminusg 12736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-coll 4110 ax-sep 4113 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-cnex 7874 ax-resscn 7875 ax-1re 7877 ax-addrcl 7880 |
This theorem depends on definitions: df-bi 117 df-3an 978 df-tru 1354 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ral 2456 df-rex 2457 df-reu 2458 df-rmo 2459 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-un 3128 df-in 3130 df-ss 3137 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-iun 3881 df-br 3996 df-opab 4057 df-mpt 4058 df-id 4284 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-ima 4630 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 df-fv 5213 df-riota 5818 df-ov 5865 df-inn 8888 df-2 8946 df-ndx 12428 df-slot 12429 df-base 12431 df-plusg 12502 df-0g 12625 df-mgm 12637 df-sgrp 12670 df-mnd 12680 df-grp 12738 df-minusg 12739 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |