ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplmulf1o Unicode version

Theorem grplmulf1o 13491
Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
grplmulf1o.b  |-  B  =  ( Base `  G
)
grplmulf1o.p  |-  .+  =  ( +g  `  G )
grplmulf1o.n  |-  F  =  ( x  e.  B  |->  ( X  .+  x
) )
Assertion
Ref Expression
grplmulf1o  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  F : B -1-1-onto-> B )
Distinct variable groups:    x, B    x, G    x,  .+    x, X
Allowed substitution hint:    F( x)

Proof of Theorem grplmulf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grplmulf1o.n . 2  |-  F  =  ( x  e.  B  |->  ( X  .+  x
) )
2 grplmulf1o.b . . . 4  |-  B  =  ( Base `  G
)
3 grplmulf1o.p . . . 4  |-  .+  =  ( +g  `  G )
42, 3grpcl 13425 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  x  e.  B )  ->  ( X  .+  x
)  e.  B )
543expa 1206 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  x  e.  B
)  ->  ( X  .+  x )  e.  B
)
6 eqid 2206 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
72, 6grpinvcl 13465 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( invg `  G ) `  X
)  e.  B )
82, 3grpcl 13425 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  X
)  e.  B  /\  y  e.  B )  ->  ( ( ( invg `  G ) `
 X )  .+  y )  e.  B
)
983expa 1206 . . 3  |-  ( ( ( G  e.  Grp  /\  ( ( invg `  G ) `  X
)  e.  B )  /\  y  e.  B
)  ->  ( (
( invg `  G ) `  X
)  .+  y )  e.  B )
107, 9syldanl 449 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  y  e.  B
)  ->  ( (
( invg `  G ) `  X
)  .+  y )  e.  B )
11 eqcom 2208 . . 3  |-  ( x  =  ( ( ( invg `  G
) `  X )  .+  y )  <->  ( (
( invg `  G ) `  X
)  .+  y )  =  x )
12 simpll 527 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  G  e.  Grp )
1310adantrl 478 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( ( invg `  G ) `
 X )  .+  y )  e.  B
)
14 simprl 529 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  B )
15 simplr 528 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  X  e.  B )
162, 3grplcan 13479 . . . . 5  |-  ( ( G  e.  Grp  /\  ( ( ( ( invg `  G
) `  X )  .+  y )  e.  B  /\  x  e.  B  /\  X  e.  B
) )  ->  (
( X  .+  (
( ( invg `  G ) `  X
)  .+  y )
)  =  ( X 
.+  x )  <->  ( (
( invg `  G ) `  X
)  .+  y )  =  x ) )
1712, 13, 14, 15, 16syl13anc 1252 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( X  .+  ( ( ( invg `  G ) `
 X )  .+  y ) )  =  ( X  .+  x
)  <->  ( ( ( invg `  G
) `  X )  .+  y )  =  x ) )
18 eqid 2206 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
192, 3, 18, 6grprinv 13468 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  (
( invg `  G ) `  X
) )  =  ( 0g `  G ) )
2019adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( X  .+  (
( invg `  G ) `  X
) )  =  ( 0g `  G ) )
2120oveq1d 5977 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( X  .+  ( ( invg `  G ) `  X
) )  .+  y
)  =  ( ( 0g `  G ) 
.+  y ) )
227adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( invg `  G ) `  X
)  e.  B )
23 simprr 531 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  e.  B )
242, 3grpass 13426 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( ( invg `  G ) `  X
)  e.  B  /\  y  e.  B )
)  ->  ( ( X  .+  ( ( invg `  G ) `
 X ) ) 
.+  y )  =  ( X  .+  (
( ( invg `  G ) `  X
)  .+  y )
) )
2512, 15, 22, 23, 24syl13anc 1252 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( X  .+  ( ( invg `  G ) `  X
) )  .+  y
)  =  ( X 
.+  ( ( ( invg `  G
) `  X )  .+  y ) ) )
262, 3, 18grplid 13448 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( 0g `  G )  .+  y
)  =  y )
2726ad2ant2rl 511 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( 0g `  G )  .+  y
)  =  y )
2821, 25, 273eqtr3d 2247 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( X  .+  (
( ( invg `  G ) `  X
)  .+  y )
)  =  y )
2928eqeq1d 2215 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( X  .+  ( ( ( invg `  G ) `
 X )  .+  y ) )  =  ( X  .+  x
)  <->  y  =  ( X  .+  x ) ) )
3017, 29bitr3d 190 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( ( ( invg `  G
) `  X )  .+  y )  =  x  <-> 
y  =  ( X 
.+  x ) ) )
3111, 30bitrid 192 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  =  ( ( ( invg `  G ) `  X
)  .+  y )  <->  y  =  ( X  .+  x ) ) )
321, 5, 10, 31f1o2d 6169 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  F : B -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    |-> cmpt 4116   -1-1-onto->wf1o 5284   ` cfv 5285  (class class class)co 5962   Basecbs 12917   +g cplusg 12994   0gc0g 13173   Grpcgrp 13417   invgcminusg 13418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-inn 9067  df-2 9125  df-ndx 12920  df-slot 12921  df-base 12923  df-plusg 13007  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator