| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplmulf1o | Unicode version | ||
| Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| grplmulf1o.b |
|
| grplmulf1o.p |
|
| grplmulf1o.n |
|
| Ref | Expression |
|---|---|
| grplmulf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplmulf1o.n |
. 2
| |
| 2 | grplmulf1o.b |
. . . 4
| |
| 3 | grplmulf1o.p |
. . . 4
| |
| 4 | 2, 3 | grpcl 13140 |
. . 3
|
| 5 | 4 | 3expa 1205 |
. 2
|
| 6 | eqid 2196 |
. . . 4
| |
| 7 | 2, 6 | grpinvcl 13180 |
. . 3
|
| 8 | 2, 3 | grpcl 13140 |
. . . 4
|
| 9 | 8 | 3expa 1205 |
. . 3
|
| 10 | 7, 9 | syldanl 449 |
. 2
|
| 11 | eqcom 2198 |
. . 3
| |
| 12 | simpll 527 |
. . . . 5
| |
| 13 | 10 | adantrl 478 |
. . . . 5
|
| 14 | simprl 529 |
. . . . 5
| |
| 15 | simplr 528 |
. . . . 5
| |
| 16 | 2, 3 | grplcan 13194 |
. . . . 5
|
| 17 | 12, 13, 14, 15, 16 | syl13anc 1251 |
. . . 4
|
| 18 | eqid 2196 |
. . . . . . . . 9
| |
| 19 | 2, 3, 18, 6 | grprinv 13183 |
. . . . . . . 8
|
| 20 | 19 | adantr 276 |
. . . . . . 7
|
| 21 | 20 | oveq1d 5937 |
. . . . . 6
|
| 22 | 7 | adantr 276 |
. . . . . . 7
|
| 23 | simprr 531 |
. . . . . . 7
| |
| 24 | 2, 3 | grpass 13141 |
. . . . . . 7
|
| 25 | 12, 15, 22, 23, 24 | syl13anc 1251 |
. . . . . 6
|
| 26 | 2, 3, 18 | grplid 13163 |
. . . . . . 7
|
| 27 | 26 | ad2ant2rl 511 |
. . . . . 6
|
| 28 | 21, 25, 27 | 3eqtr3d 2237 |
. . . . 5
|
| 29 | 28 | eqeq1d 2205 |
. . . 4
|
| 30 | 17, 29 | bitr3d 190 |
. . 3
|
| 31 | 11, 30 | bitrid 192 |
. 2
|
| 32 | 1, 5, 10, 31 | f1o2d 6128 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |