ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplmulf1o Unicode version

Theorem grplmulf1o 13149
Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
grplmulf1o.b  |-  B  =  ( Base `  G
)
grplmulf1o.p  |-  .+  =  ( +g  `  G )
grplmulf1o.n  |-  F  =  ( x  e.  B  |->  ( X  .+  x
) )
Assertion
Ref Expression
grplmulf1o  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  F : B -1-1-onto-> B )
Distinct variable groups:    x, B    x, G    x,  .+    x, X
Allowed substitution hint:    F( x)

Proof of Theorem grplmulf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grplmulf1o.n . 2  |-  F  =  ( x  e.  B  |->  ( X  .+  x
) )
2 grplmulf1o.b . . . 4  |-  B  =  ( Base `  G
)
3 grplmulf1o.p . . . 4  |-  .+  =  ( +g  `  G )
42, 3grpcl 13083 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  x  e.  B )  ->  ( X  .+  x
)  e.  B )
543expa 1205 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  x  e.  B
)  ->  ( X  .+  x )  e.  B
)
6 eqid 2193 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
72, 6grpinvcl 13123 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( invg `  G ) `  X
)  e.  B )
82, 3grpcl 13083 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  X
)  e.  B  /\  y  e.  B )  ->  ( ( ( invg `  G ) `
 X )  .+  y )  e.  B
)
983expa 1205 . . 3  |-  ( ( ( G  e.  Grp  /\  ( ( invg `  G ) `  X
)  e.  B )  /\  y  e.  B
)  ->  ( (
( invg `  G ) `  X
)  .+  y )  e.  B )
107, 9syldanl 449 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  y  e.  B
)  ->  ( (
( invg `  G ) `  X
)  .+  y )  e.  B )
11 eqcom 2195 . . 3  |-  ( x  =  ( ( ( invg `  G
) `  X )  .+  y )  <->  ( (
( invg `  G ) `  X
)  .+  y )  =  x )
12 simpll 527 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  G  e.  Grp )
1310adantrl 478 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( ( invg `  G ) `
 X )  .+  y )  e.  B
)
14 simprl 529 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  B )
15 simplr 528 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  X  e.  B )
162, 3grplcan 13137 . . . . 5  |-  ( ( G  e.  Grp  /\  ( ( ( ( invg `  G
) `  X )  .+  y )  e.  B  /\  x  e.  B  /\  X  e.  B
) )  ->  (
( X  .+  (
( ( invg `  G ) `  X
)  .+  y )
)  =  ( X 
.+  x )  <->  ( (
( invg `  G ) `  X
)  .+  y )  =  x ) )
1712, 13, 14, 15, 16syl13anc 1251 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( X  .+  ( ( ( invg `  G ) `
 X )  .+  y ) )  =  ( X  .+  x
)  <->  ( ( ( invg `  G
) `  X )  .+  y )  =  x ) )
18 eqid 2193 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
192, 3, 18, 6grprinv 13126 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  (
( invg `  G ) `  X
) )  =  ( 0g `  G ) )
2019adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( X  .+  (
( invg `  G ) `  X
) )  =  ( 0g `  G ) )
2120oveq1d 5934 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( X  .+  ( ( invg `  G ) `  X
) )  .+  y
)  =  ( ( 0g `  G ) 
.+  y ) )
227adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( invg `  G ) `  X
)  e.  B )
23 simprr 531 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  e.  B )
242, 3grpass 13084 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( ( invg `  G ) `  X
)  e.  B  /\  y  e.  B )
)  ->  ( ( X  .+  ( ( invg `  G ) `
 X ) ) 
.+  y )  =  ( X  .+  (
( ( invg `  G ) `  X
)  .+  y )
) )
2512, 15, 22, 23, 24syl13anc 1251 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( X  .+  ( ( invg `  G ) `  X
) )  .+  y
)  =  ( X 
.+  ( ( ( invg `  G
) `  X )  .+  y ) ) )
262, 3, 18grplid 13106 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( 0g `  G )  .+  y
)  =  y )
2726ad2ant2rl 511 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( 0g `  G )  .+  y
)  =  y )
2821, 25, 273eqtr3d 2234 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( X  .+  (
( ( invg `  G ) `  X
)  .+  y )
)  =  y )
2928eqeq1d 2202 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( X  .+  ( ( ( invg `  G ) `
 X )  .+  y ) )  =  ( X  .+  x
)  <->  y  =  ( X  .+  x ) ) )
3017, 29bitr3d 190 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( ( ( invg `  G
) `  X )  .+  y )  =  x  <-> 
y  =  ( X 
.+  x ) ) )
3111, 30bitrid 192 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  =  ( ( ( invg `  G ) `  X
)  .+  y )  <->  y  =  ( X  .+  x ) ) )
321, 5, 10, 31f1o2d 6125 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  F : B -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    |-> cmpt 4091   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Grpcgrp 13075   invgcminusg 13076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator