| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplmulf1o | Unicode version | ||
| Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| grplmulf1o.b |
|
| grplmulf1o.p |
|
| grplmulf1o.n |
|
| Ref | Expression |
|---|---|
| grplmulf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplmulf1o.n |
. 2
| |
| 2 | grplmulf1o.b |
. . . 4
| |
| 3 | grplmulf1o.p |
. . . 4
| |
| 4 | 2, 3 | grpcl 13536 |
. . 3
|
| 5 | 4 | 3expa 1227 |
. 2
|
| 6 | eqid 2229 |
. . . 4
| |
| 7 | 2, 6 | grpinvcl 13576 |
. . 3
|
| 8 | 2, 3 | grpcl 13536 |
. . . 4
|
| 9 | 8 | 3expa 1227 |
. . 3
|
| 10 | 7, 9 | syldanl 449 |
. 2
|
| 11 | eqcom 2231 |
. . 3
| |
| 12 | simpll 527 |
. . . . 5
| |
| 13 | 10 | adantrl 478 |
. . . . 5
|
| 14 | simprl 529 |
. . . . 5
| |
| 15 | simplr 528 |
. . . . 5
| |
| 16 | 2, 3 | grplcan 13590 |
. . . . 5
|
| 17 | 12, 13, 14, 15, 16 | syl13anc 1273 |
. . . 4
|
| 18 | eqid 2229 |
. . . . . . . . 9
| |
| 19 | 2, 3, 18, 6 | grprinv 13579 |
. . . . . . . 8
|
| 20 | 19 | adantr 276 |
. . . . . . 7
|
| 21 | 20 | oveq1d 6015 |
. . . . . 6
|
| 22 | 7 | adantr 276 |
. . . . . . 7
|
| 23 | simprr 531 |
. . . . . . 7
| |
| 24 | 2, 3 | grpass 13537 |
. . . . . . 7
|
| 25 | 12, 15, 22, 23, 24 | syl13anc 1273 |
. . . . . 6
|
| 26 | 2, 3, 18 | grplid 13559 |
. . . . . . 7
|
| 27 | 26 | ad2ant2rl 511 |
. . . . . 6
|
| 28 | 21, 25, 27 | 3eqtr3d 2270 |
. . . . 5
|
| 29 | 28 | eqeq1d 2238 |
. . . 4
|
| 30 | 17, 29 | bitr3d 190 |
. . 3
|
| 31 | 11, 30 | bitrid 192 |
. 2
|
| 32 | 1, 5, 10, 31 | f1o2d 6209 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |