| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imdistanda | Unicode version | ||
| Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| imdistanda.1 |
|
| Ref | Expression |
|---|---|
| imdistanda |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistanda.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | imdistand 447 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fzind 9460 uzss 9641 exbtwnzlemshrink 10357 rebtwn2zlemshrink 10362 cau3lem 11298 reldvdsrsrg 13726 dvdsrvald 13727 dvdsrex 13732 iscnp4 14562 cnntr 14569 |
| Copyright terms: Public domain | W3C validator |