| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imdistanda | Unicode version | ||
| Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| imdistanda.1 | 
 | 
| Ref | Expression | 
|---|---|
| imdistanda | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imdistanda.1 | 
. . 3
 | |
| 2 | 1 | ex 115 | 
. 2
 | 
| 3 | 2 | imdistand 447 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: fzind 9441 uzss 9622 exbtwnzlemshrink 10338 rebtwn2zlemshrink 10343 cau3lem 11279 reldvdsrsrg 13648 dvdsrvald 13649 dvdsrex 13654 iscnp4 14454 cnntr 14461 | 
| Copyright terms: Public domain | W3C validator |