Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imdistanda | Unicode version |
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
imdistanda.1 |
Ref | Expression |
---|---|
imdistanda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanda.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | 2 | imdistand 445 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: fzind 9327 uzss 9507 exbtwnzlemshrink 10205 rebtwn2zlemshrink 10210 cau3lem 11078 iscnp4 13012 cnntr 13019 |
Copyright terms: Public domain | W3C validator |