ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistanda Unicode version

Theorem imdistanda 444
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
imdistanda.1  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
Assertion
Ref Expression
imdistanda  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps 
/\  th ) ) )

Proof of Theorem imdistanda
StepHypRef Expression
1 imdistanda.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
21ex 114 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32imdistand 443 1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps 
/\  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  fzind  9173  uzss  9353  exbtwnzlemshrink  10033  rebtwn2zlemshrink  10038  cau3lem  10893  iscnp4  12397  cnntr  12404
  Copyright terms: Public domain W3C validator