ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.32d Unicode version

Theorem pm5.32d 450
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.)
Hypothesis
Ref Expression
pm5.32d.1  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
Assertion
Ref Expression
pm5.32d  |-  ( ph  ->  ( ( ps  /\  ch )  <->  ( ps  /\  th ) ) )

Proof of Theorem pm5.32d
StepHypRef Expression
1 pm5.32d.1 . . . 4  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
2 biimp 118 . . . 4  |-  ( ( ch  <->  th )  ->  ( ch  ->  th ) )
31, 2syl6 33 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
43imdistand 447 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps 
/\  th ) ) )
5 biimpr 130 . . . 4  |-  ( ( ch  <->  th )  ->  ( th  ->  ch ) )
61, 5syl6 33 . . 3  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
76imdistand 447 . 2  |-  ( ph  ->  ( ( ps  /\  th )  ->  ( ps  /\ 
ch ) ) )
84, 7impbid 129 1  |-  ( ph  ->  ( ( ps  /\  ch )  <->  ( ps  /\  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.32rd  451  pm5.32da  452  pm5.32  453  anbi2d  464  cbvex2  1947  cores  5200  isoini  5905  mpoeq123  6022  genpassl  7667  genpassu  7668  fzind  9518  btwnz  9522  elfzm11  10243  isprm2  12524  isprm3  12525  modprminv  12657  modprminveq  12658
  Copyright terms: Public domain W3C validator