| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32d | Unicode version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 |
|
| Ref | Expression |
|---|---|
| pm5.32d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 |
. . . 4
| |
| 2 | biimp 118 |
. . . 4
| |
| 3 | 1, 2 | syl6 33 |
. . 3
|
| 4 | 3 | imdistand 447 |
. 2
|
| 5 | biimpr 130 |
. . . 4
| |
| 6 | 1, 5 | syl6 33 |
. . 3
|
| 7 | 6 | imdistand 447 |
. 2
|
| 8 | 4, 7 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32rd 451 pm5.32da 452 pm5.32 453 anbi2d 464 cbvex2 1937 cores 5174 isoini 5868 mpoeq123 5985 genpassl 7608 genpassu 7609 fzind 9458 btwnz 9462 elfzm11 10183 isprm2 12310 isprm3 12311 modprminv 12443 modprminveq 12444 |
| Copyright terms: Public domain | W3C validator |