| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32d | Unicode version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 |
|
| Ref | Expression |
|---|---|
| pm5.32d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 |
. . . 4
| |
| 2 | biimp 118 |
. . . 4
| |
| 3 | 1, 2 | syl6 33 |
. . 3
|
| 4 | 3 | imdistand 447 |
. 2
|
| 5 | biimpr 130 |
. . . 4
| |
| 6 | 1, 5 | syl6 33 |
. . 3
|
| 7 | 6 | imdistand 447 |
. 2
|
| 8 | 4, 7 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32rd 451 pm5.32da 452 pm5.32 453 anbi2d 464 cbvex2 1946 cores 5186 isoini 5887 mpoeq123 6004 genpassl 7637 genpassu 7638 fzind 9488 btwnz 9492 elfzm11 10213 isprm2 12439 isprm3 12440 modprminv 12572 modprminveq 12573 |
| Copyright terms: Public domain | W3C validator |