| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32d | Unicode version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 |
|
| Ref | Expression |
|---|---|
| pm5.32d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 |
. . . 4
| |
| 2 | biimp 118 |
. . . 4
| |
| 3 | 1, 2 | syl6 33 |
. . 3
|
| 4 | 3 | imdistand 447 |
. 2
|
| 5 | biimpr 130 |
. . . 4
| |
| 6 | 1, 5 | syl6 33 |
. . 3
|
| 7 | 6 | imdistand 447 |
. 2
|
| 8 | 4, 7 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32rd 451 pm5.32da 452 pm5.32 453 anbi2d 464 cbvex2 1947 cores 5200 isoini 5905 mpoeq123 6022 genpassl 7667 genpassu 7668 fzind 9518 btwnz 9522 elfzm11 10243 isprm2 12524 isprm3 12525 modprminv 12657 modprminveq 12658 |
| Copyright terms: Public domain | W3C validator |