ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.32d Unicode version

Theorem pm5.32d 446
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.)
Hypothesis
Ref Expression
pm5.32d.1  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
Assertion
Ref Expression
pm5.32d  |-  ( ph  ->  ( ( ps  /\  ch )  <->  ( ps  /\  th ) ) )

Proof of Theorem pm5.32d
StepHypRef Expression
1 pm5.32d.1 . . . 4  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
2 biimp 117 . . . 4  |-  ( ( ch  <->  th )  ->  ( ch  ->  th ) )
31, 2syl6 33 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
43imdistand 444 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps 
/\  th ) ) )
5 biimpr 129 . . . 4  |-  ( ( ch  <->  th )  ->  ( th  ->  ch ) )
61, 5syl6 33 . . 3  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
76imdistand 444 . 2  |-  ( ph  ->  ( ( ps  /\  th )  ->  ( ps  /\ 
ch ) ) )
84, 7impbid 128 1  |-  ( ph  ->  ( ( ps  /\  ch )  <->  ( ps  /\  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.32rd  447  pm5.32da  448  pm5.32  449  anbi2d  460  cbvex2  1902  cores  5089  isoini  5768  mpoeq123  5880  genpassl  7444  genpassu  7445  fzind  9279  btwnz  9283  elfzm11  9993  isprm2  11993  isprm3  11994
  Copyright terms: Public domain W3C validator