| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32d | Unicode version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 |
|
| Ref | Expression |
|---|---|
| pm5.32d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 |
. . . 4
| |
| 2 | biimp 118 |
. . . 4
| |
| 3 | 1, 2 | syl6 33 |
. . 3
|
| 4 | 3 | imdistand 447 |
. 2
|
| 5 | biimpr 130 |
. . . 4
| |
| 6 | 1, 5 | syl6 33 |
. . 3
|
| 7 | 6 | imdistand 447 |
. 2
|
| 8 | 4, 7 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32rd 451 pm5.32da 452 pm5.32 453 anbi2d 464 cbvex2 1945 cores 5185 isoini 5886 mpoeq123 6003 genpassl 7636 genpassu 7637 fzind 9487 btwnz 9491 elfzm11 10212 isprm2 12410 isprm3 12411 modprminv 12543 modprminveq 12544 |
| Copyright terms: Public domain | W3C validator |