ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xor3dc GIF version

Theorem xor3dc 1377
Description: Two ways to express "exclusive or" between decidable propositions. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
xor3dc (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))))

Proof of Theorem xor3dc
StepHypRef Expression
1 dcn 832 . . . . . 6 (DECID 𝜓DECID ¬ 𝜓)
2 dcbi 926 . . . . . 6 (DECID 𝜑 → (DECID ¬ 𝜓DECID (𝜑 ↔ ¬ 𝜓)))
31, 2syl5 32 . . . . 5 (DECID 𝜑 → (DECID 𝜓DECID (𝜑 ↔ ¬ 𝜓)))
43imp 123 . . . 4 ((DECID 𝜑DECID 𝜓) → DECID (𝜑 ↔ ¬ 𝜓))
5 pm5.18dc 873 . . . . . . 7 (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))))
65imp 123 . . . . . 6 ((DECID 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))
76a1d 22 . . . . 5 ((DECID 𝜑DECID 𝜓) → (DECID (𝜑 ↔ ¬ 𝜓) → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))))
87con2biddc 870 . . . 4 ((DECID 𝜑DECID 𝜓) → (DECID (𝜑 ↔ ¬ 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑𝜓))))
94, 8mpd 13 . . 3 ((DECID 𝜑DECID 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑𝜓)))
109bicomd 140 . 2 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓)))
1110ex 114 1 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by:  pm5.15dc  1379  xor2dc  1380  nbbndc  1384
  Copyright terms: Public domain W3C validator