Proof of Theorem xor3dc
Step | Hyp | Ref
| Expression |
1 | | dcn 832 |
. . . . . 6
⊢
(DECID 𝜓 → DECID ¬ 𝜓) |
2 | | dcbi 926 |
. . . . . 6
⊢
(DECID 𝜑 → (DECID ¬ 𝜓 → DECID
(𝜑 ↔ ¬ 𝜓))) |
3 | 1, 2 | syl5 32 |
. . . . 5
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ↔ ¬ 𝜓))) |
4 | 3 | imp 123 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ↔ ¬ 𝜓)) |
5 | | pm5.18dc 873 |
. . . . . . 7
⊢
(DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))) |
6 | 5 | imp 123 |
. . . . . 6
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))) |
7 | 6 | a1d 22 |
. . . . 5
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (DECID (𝜑 ↔ ¬ 𝜓) → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))) |
8 | 7 | con2biddc 870 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (DECID (𝜑 ↔ ¬ 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)))) |
9 | 4, 8 | mpd 13 |
. . 3
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓))) |
10 | 9 | bicomd 140 |
. 2
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓))) |
11 | 10 | ex 114 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)))) |