ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcbi Unicode version

Theorem dcbi 926
Description: An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcbi  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  <->  ps ) ) )

Proof of Theorem dcbi
StepHypRef Expression
1 dcim 831 . . 3  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  ->  ps )
) )
2 dcim 831 . . . 4  |-  (DECID  ps  ->  (DECID  ph  -> DECID  ( ps  ->  ph ) ) )
32com12 30 . . 3  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ps  ->  ph )
) )
4 dcan2 924 . . 3  |-  (DECID  ( ph  ->  ps )  ->  (DECID  ( ps  ->  ph )  -> DECID  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) ) )
51, 3, 4syl6c 66 . 2  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) ) )
6 dfbi2 386 . . 3  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
76dcbii 830 . 2  |-  (DECID  ( ph  <->  ps )  <-> DECID  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) )
85, 7syl6ibr 161 1  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  <->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  xor3dc  1377  pm5.15dc  1379  bilukdc  1386  xordidc  1389
  Copyright terms: Public domain W3C validator