ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcbi Unicode version

Theorem dcbi 938
Description: An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcbi  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  <->  ps ) ) )

Proof of Theorem dcbi
StepHypRef Expression
1 dcim 842 . . 3  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  ->  ps )
) )
2 dcim 842 . . . 4  |-  (DECID  ps  ->  (DECID  ph  -> DECID  ( ps  ->  ph ) ) )
32com12 30 . . 3  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ps  ->  ph )
) )
4 dcan 935 . . . 4  |-  ( (DECID  (
ph  ->  ps )  /\ DECID  ( ps  ->  ph ) )  -> DECID  (
( ph  ->  ps )  /\  ( ps  ->  ph )
) )
54ex 115 . . 3  |-  (DECID  ( ph  ->  ps )  ->  (DECID  ( ps  ->  ph )  -> DECID  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) ) )
61, 3, 5syl6c 66 . 2  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) ) )
7 dfbi2 388 . . 3  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
87dcbii 841 . 2  |-  (DECID  ( ph  <->  ps )  <-> DECID  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) )
96, 8imbitrrdi 162 1  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  <->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  xor3dc  1398  pm5.15dc  1400  bilukdc  1407  xordidc  1410
  Copyright terms: Public domain W3C validator