Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcbi | Unicode version |
Description: An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
Ref | Expression |
---|---|
dcbi | DECID DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcim 841 | . . 3 DECID DECID DECID | |
2 | dcim 841 | . . . 4 DECID DECID DECID | |
3 | 2 | com12 30 | . . 3 DECID DECID DECID |
4 | dcan2 934 | . . 3 DECID DECID DECID | |
5 | 1, 3, 4 | syl6c 66 | . 2 DECID DECID DECID |
6 | dfbi2 388 | . . 3 | |
7 | 6 | dcbii 840 | . 2 DECID DECID |
8 | 5, 7 | syl6ibr 162 | 1 DECID DECID DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 DECID wdc 834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-dc 835 |
This theorem is referenced by: xor3dc 1387 pm5.15dc 1389 bilukdc 1396 xordidc 1399 |
Copyright terms: Public domain | W3C validator |