| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbi | Unicode version | ||
| Description: An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
| Ref | Expression |
|---|---|
| dcbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcim 842 |
. . 3
| |
| 2 | dcim 842 |
. . . 4
| |
| 3 | 2 | com12 30 |
. . 3
|
| 4 | dcan 935 |
. . . 4
| |
| 5 | 4 | ex 115 |
. . 3
|
| 6 | 1, 3, 5 | syl6c 66 |
. 2
|
| 7 | dfbi2 388 |
. . 3
| |
| 8 | 7 | dcbii 841 |
. 2
|
| 9 | 6, 8 | imbitrrdi 162 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: xor3dc 1398 pm5.15dc 1400 bilukdc 1407 xordidc 1410 |
| Copyright terms: Public domain | W3C validator |