ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  655  mtod  664  pm2.76  809  dcim  842  condcOLD  855  pm5.18dc  884  pm2.54dc  892  pm2.85dc  906  dcor  937  anordc  958  xor3dc  1398  biassdc  1406  syl6ci  1456  hbequid  1524  19.30dc  1638  equsalh  1737  equvini  1769  nfsbxyt  1959  modc  2085  euan  2098  moexexdc  2126  nebidc  2444  rgen2a  2548  ralrimivw  2568  reximdv  2595  rexlimdvw  2615  r19.32r  2640  reuind  2965  rabxmdc  3478  rexn0  3545  exmidn0m  4230  regexmidlem1  4565  finds1  4634  nn0suc  4636  nndceq0  4650  ssrel2  4749  poltletr  5066  fmptco  5724  nnsucsssuc  6545  map1  6866  1domsn  6873  pw2f1odclem  6890  fopwdom  6892  mapxpen  6904  fidifsnen  6926  eldju2ndl  7131  eldju2ndr  7132  difinfsnlem  7158  finomni  7199  fodjuomnilemdc  7203  pr2ne  7252  exmidfodomrlemim  7261  indpi  7402  nnindnn  7953  nnind  8998  nn1m1nn  9000  nn1gt1  9016  nn0n0n1ge2b  9396  nn0le2is012  9399  xrltnsym  9859  xrlttr  9861  xrltso  9862  xltnegi  9901  xsubge0  9947  fzospliti  10243  elfzonlteqm1  10277  qbtwnxr  10326  modfzo0difsn  10466  seqfveq2g  10548  monoord  10556  seqf1oglem1  10590  seqf1oglem2  10591  seqhomog  10601  seq3coll  10913  rexuz3  11134  rexanuz2  11135  fprodfac  11758  dvdsaddre2b  11984  dvdsle  11986  dvdsabseq  11989  nno  12047  nn0seqcvgd  12179  lcmdvds  12217  divgcdcoprm0  12239  exprmfct  12276  rpexp1i  12292  phibndlem  12354  prm23lt5  12401  pc2dvds  12468  pcz  12470  pcadd  12478  pcmptcl  12480  oddprmdvds  12492  4sqlem11  12539  ennnfoneleminc  12568  dfgrp3me  13172  epttop  14258  xblss2ps  14572  xblss2  14573  blfps  14577  blf  14578  metrest  14674  cncfmptc  14750  zabsle1  15115  lgsne0  15154  gausslemma2dlem0f  15170  gausslemma2dlem1a  15174  2sqlem10  15212  bj-nn0suc0  15442  exmidsbthrlem  15512
  Copyright terms: Public domain W3C validator