ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  656  mtod  665  pm2.76  810  dcim  843  condcOLD  856  pm5.18dc  885  pm2.54dc  893  pm2.85dc  907  dcor  938  anordc  959  xor3dc  1407  biassdc  1415  syl6ci  1465  hbequid  1536  19.30dc  1650  equsalh  1749  equvini  1781  nfsbxyt  1971  modc  2097  euan  2110  moexexdc  2138  nebidc  2456  rgen2a  2560  ralrimivw  2580  reximdv  2607  rexlimdvw  2627  r19.32r  2652  reuind  2978  rabxmdc  3492  rexn0  3559  exmidn0m  4245  regexmidlem1  4581  finds1  4650  nn0suc  4652  nndceq0  4666  ssrel2  4765  poltletr  5083  fmptco  5746  nnsucsssuc  6578  map1  6904  1domsn  6914  pw2f1odclem  6931  fopwdom  6933  mapxpen  6945  fidifsnen  6967  eldju2ndl  7174  eldju2ndr  7175  difinfsnlem  7201  finomni  7242  fodjuomnilemdc  7246  pr2ne  7300  exmidfodomrlemim  7309  indpi  7455  nnindnn  8006  nnind  9052  nn1m1nn  9054  nn1gt1  9070  nn0n0n1ge2b  9452  nn0le2is012  9455  xrltnsym  9915  xrlttr  9917  xrltso  9918  xltnegi  9957  xsubge0  10003  fzospliti  10300  elfzonlteqm1  10339  qbtwnxr  10400  modfzo0difsn  10540  seqfveq2g  10622  monoord  10630  seqf1oglem1  10664  seqf1oglem2  10665  seqhomog  10675  seq3coll  10987  rexuz3  11301  rexanuz2  11302  fprodfac  11926  dvdsaddre2b  12152  dvdsle  12155  dvdsabseq  12158  nno  12217  nn0seqcvgd  12363  lcmdvds  12401  divgcdcoprm0  12423  exprmfct  12460  rpexp1i  12476  phibndlem  12538  prm23lt5  12586  pc2dvds  12653  pcz  12655  pcadd  12663  pcmptcl  12665  oddprmdvds  12677  4sqlem11  12724  ennnfoneleminc  12782  dfgrp3me  13432  mplsubgfilemm  14460  epttop  14562  xblss2ps  14876  xblss2  14877  blfps  14881  blf  14882  metrest  14978  cncfmptc  15068  dvmptfsum  15197  perfectlem2  15472  zabsle1  15476  lgsne0  15515  gausslemma2dlem0f  15531  gausslemma2dlem1a  15535  lgsquad2lem2  15559  lgsquad3  15561  2lgslem1a1  15563  2lgslem3  15578  2lgs  15581  2lgsoddprm  15590  2sqlem10  15602  bj-nn0suc0  15886  exmidsbthrlem  15961
  Copyright terms: Public domain W3C validator