ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  655  mtod  664  pm2.76  809  dcim  842  condcOLD  855  pm5.18dc  884  pm2.54dc  892  pm2.85dc  906  dcor  937  anordc  958  xor3dc  1398  biassdc  1406  syl6ci  1456  hbequid  1527  19.30dc  1641  equsalh  1740  equvini  1772  nfsbxyt  1962  modc  2088  euan  2101  moexexdc  2129  nebidc  2447  rgen2a  2551  ralrimivw  2571  reximdv  2598  rexlimdvw  2618  r19.32r  2643  reuind  2969  rabxmdc  3482  rexn0  3549  exmidn0m  4234  regexmidlem1  4569  finds1  4638  nn0suc  4640  nndceq0  4654  ssrel2  4753  poltletr  5070  fmptco  5728  nnsucsssuc  6550  map1  6871  1domsn  6878  pw2f1odclem  6895  fopwdom  6897  mapxpen  6909  fidifsnen  6931  eldju2ndl  7138  eldju2ndr  7139  difinfsnlem  7165  finomni  7206  fodjuomnilemdc  7210  pr2ne  7259  exmidfodomrlemim  7268  indpi  7409  nnindnn  7960  nnind  9006  nn1m1nn  9008  nn1gt1  9024  nn0n0n1ge2b  9405  nn0le2is012  9408  xrltnsym  9868  xrlttr  9870  xrltso  9871  xltnegi  9910  xsubge0  9956  fzospliti  10252  elfzonlteqm1  10286  qbtwnxr  10347  modfzo0difsn  10487  seqfveq2g  10569  monoord  10577  seqf1oglem1  10611  seqf1oglem2  10612  seqhomog  10622  seq3coll  10934  rexuz3  11155  rexanuz2  11156  fprodfac  11780  dvdsaddre2b  12006  dvdsle  12009  dvdsabseq  12012  nno  12071  nn0seqcvgd  12209  lcmdvds  12247  divgcdcoprm0  12269  exprmfct  12306  rpexp1i  12322  phibndlem  12384  prm23lt5  12432  pc2dvds  12499  pcz  12501  pcadd  12509  pcmptcl  12511  oddprmdvds  12523  4sqlem11  12570  ennnfoneleminc  12628  dfgrp3me  13232  epttop  14326  xblss2ps  14640  xblss2  14641  blfps  14645  blf  14646  metrest  14742  cncfmptc  14832  dvmptfsum  14961  perfectlem2  15236  zabsle1  15240  lgsne0  15279  gausslemma2dlem0f  15295  gausslemma2dlem1a  15299  lgsquad2lem2  15323  lgsquad3  15325  2lgslem1a1  15327  2lgslem3  15342  2lgs  15345  2lgsoddprm  15354  2sqlem10  15366  bj-nn0suc0  15596  exmidsbthrlem  15666
  Copyright terms: Public domain W3C validator