ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 103) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  127  imbi2d  229  adantr  274  jctild  314  jctird  315  pm3.4  331  anbi2d  461  anbi1d  462  conax1k  649  mtod  658  pm2.76  803  dcim  836  condcOLD  849  pm5.18dc  878  pm2.54dc  886  pm2.85dc  900  dcor  930  anordc  951  xor3dc  1382  biassdc  1390  syl6ci  1438  hbequid  1506  19.30dc  1620  equsalh  1719  equvini  1751  nfsbxyt  1936  modc  2062  euan  2075  moexexdc  2103  nebidc  2420  rgen2a  2524  ralrimivw  2544  reximdv  2571  rexlimdvw  2591  r19.32r  2616  reuind  2935  rabxmdc  3446  rexn0  3513  exmidn0m  4187  regexmidlem1  4517  finds1  4586  nn0suc  4588  nndceq0  4602  ssrel2  4701  poltletr  5011  fmptco  5662  nnsucsssuc  6471  map1  6790  1domsn  6797  fopwdom  6814  mapxpen  6826  fidifsnen  6848  eldju2ndl  7049  eldju2ndr  7050  difinfsnlem  7076  finomni  7116  fodjuomnilemdc  7120  pr2ne  7169  exmidfodomrlemim  7178  indpi  7304  nnindnn  7855  nnind  8894  nn1m1nn  8896  nn1gt1  8912  nn0n0n1ge2b  9291  nn0le2is012  9294  xrltnsym  9750  xrlttr  9752  xrltso  9753  xltnegi  9792  xsubge0  9838  fzospliti  10132  elfzonlteqm1  10166  qbtwnxr  10214  modfzo0difsn  10351  monoord  10432  seq3coll  10777  rexuz3  10954  rexanuz2  10955  fprodfac  11578  dvdsle  11804  dvdsabseq  11807  nno  11865  nn0seqcvgd  11995  lcmdvds  12033  divgcdcoprm0  12055  exprmfct  12092  rpexp1i  12108  phibndlem  12170  prm23lt5  12217  pc2dvds  12283  pcz  12285  pcadd  12293  pcmptcl  12294  oddprmdvds  12306  ennnfoneleminc  12366  epttop  12884  xblss2ps  13198  xblss2  13199  blfps  13203  blf  13204  metrest  13300  cncfmptc  13376  zabsle1  13694  lgsne0  13733  2sqlem10  13755  bj-nn0suc0  13985  exmidsbthrlem  14054
  Copyright terms: Public domain W3C validator