ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  656  mtod  665  pm2.76  810  dcim  843  condcOLD  856  pm5.18dc  885  pm2.54dc  893  pm2.85dc  907  dcor  938  anordc  959  xor3dc  1407  biassdc  1415  syl6ci  1466  hbequid  1537  19.30dc  1651  equsalh  1750  equvini  1782  nfsbxyt  1972  modc  2099  euan  2112  moexexdc  2140  nebidc  2458  rgen2a  2562  ralrimivw  2582  reximdv  2609  rexlimdvw  2629  r19.32r  2654  reuind  2985  rabxmdc  3500  rexn0  3567  ssprsseq  3806  exmidn0m  4261  regexmidlem1  4599  finds1  4668  nn0suc  4670  nndceq0  4684  ssrel2  4783  poltletr  5102  fmptco  5769  nnsucsssuc  6601  map1  6928  1domsn  6939  pw2f1odclem  6956  fopwdom  6958  mapxpen  6970  fidifsnen  6993  eldju2ndl  7200  eldju2ndr  7201  difinfsnlem  7227  finomni  7268  fodjuomnilemdc  7272  pr2ne  7326  exmidfodomrlemim  7340  indpi  7490  nnindnn  8041  nnind  9087  nn1m1nn  9089  nn1gt1  9105  nn0n0n1ge2b  9487  nn0le2is012  9490  xrltnsym  9950  xrlttr  9952  xrltso  9953  xltnegi  9992  xsubge0  10038  fzospliti  10335  elfzonlteqm1  10376  qbtwnxr  10437  modfzo0difsn  10577  seqfveq2g  10659  monoord  10667  seqf1oglem1  10701  seqf1oglem2  10702  seqhomog  10712  seq3coll  11024  swrdswrd  11196  pfxccatin12lem3  11223  pfxccat3  11225  rexuz3  11416  rexanuz2  11417  fprodfac  12041  dvdsaddre2b  12267  dvdsle  12270  dvdsabseq  12273  nno  12332  nn0seqcvgd  12478  lcmdvds  12516  divgcdcoprm0  12538  exprmfct  12575  rpexp1i  12591  phibndlem  12653  prm23lt5  12701  pc2dvds  12768  pcz  12770  pcadd  12778  pcmptcl  12780  oddprmdvds  12792  4sqlem11  12839  ennnfoneleminc  12897  dfgrp3me  13547  mplsubgfilemm  14575  epttop  14677  xblss2ps  14991  xblss2  14992  blfps  14996  blf  14997  metrest  15093  cncfmptc  15183  dvmptfsum  15312  perfectlem2  15587  zabsle1  15591  lgsne0  15630  gausslemma2dlem0f  15646  gausslemma2dlem1a  15650  lgsquad2lem2  15674  lgsquad3  15676  2lgslem1a1  15678  2lgslem3  15693  2lgs  15696  2lgsoddprm  15705  2sqlem10  15717  bj-nn0suc0  16085  exmidsbthrlem  16163
  Copyright terms: Public domain W3C validator