ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  655  mtod  664  pm2.76  809  dcim  842  condcOLD  855  pm5.18dc  884  pm2.54dc  892  pm2.85dc  906  dcor  937  anordc  958  xor3dc  1398  biassdc  1406  syl6ci  1456  hbequid  1524  19.30dc  1638  equsalh  1737  equvini  1769  nfsbxyt  1959  modc  2085  euan  2098  moexexdc  2126  nebidc  2444  rgen2a  2548  ralrimivw  2568  reximdv  2595  rexlimdvw  2615  r19.32r  2640  reuind  2966  rabxmdc  3479  rexn0  3546  exmidn0m  4231  regexmidlem1  4566  finds1  4635  nn0suc  4637  nndceq0  4651  ssrel2  4750  poltletr  5067  fmptco  5725  nnsucsssuc  6547  map1  6868  1domsn  6875  pw2f1odclem  6892  fopwdom  6894  mapxpen  6906  fidifsnen  6928  eldju2ndl  7133  eldju2ndr  7134  difinfsnlem  7160  finomni  7201  fodjuomnilemdc  7205  pr2ne  7254  exmidfodomrlemim  7263  indpi  7404  nnindnn  7955  nnind  9000  nn1m1nn  9002  nn1gt1  9018  nn0n0n1ge2b  9399  nn0le2is012  9402  xrltnsym  9862  xrlttr  9864  xrltso  9865  xltnegi  9904  xsubge0  9950  fzospliti  10246  elfzonlteqm1  10280  qbtwnxr  10329  modfzo0difsn  10469  seqfveq2g  10551  monoord  10559  seqf1oglem1  10593  seqf1oglem2  10594  seqhomog  10604  seq3coll  10916  rexuz3  11137  rexanuz2  11138  fprodfac  11761  dvdsaddre2b  11987  dvdsle  11989  dvdsabseq  11992  nno  12050  nn0seqcvgd  12182  lcmdvds  12220  divgcdcoprm0  12242  exprmfct  12279  rpexp1i  12295  phibndlem  12357  prm23lt5  12404  pc2dvds  12471  pcz  12473  pcadd  12481  pcmptcl  12483  oddprmdvds  12495  4sqlem11  12542  ennnfoneleminc  12571  dfgrp3me  13175  epttop  14269  xblss2ps  14583  xblss2  14584  blfps  14588  blf  14589  metrest  14685  cncfmptc  14775  dvmptfsum  14904  zabsle1  15156  lgsne0  15195  gausslemma2dlem0f  15211  gausslemma2dlem1a  15215  lgsquad2lem2  15239  lgsquad3  15241  2lgslem1a1  15243  2lgslem3  15258  2lgs  15261  2lgsoddprm  15270  2sqlem10  15282  bj-nn0suc0  15512  exmidsbthrlem  15582
  Copyright terms: Public domain W3C validator