ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  658  mtod  667  pm2.76  813  dcim  846  condcOLD  859  pm5.18dc  888  pm2.54dc  896  pm2.85dc  910  dcor  941  anordc  962  xor3dc  1429  biassdc  1437  syl6ci  1488  hbequid  1559  19.30dc  1673  equsalh  1772  equvini  1804  nfsbxyt  1994  modc  2121  euan  2134  moexexdc  2162  nebidc  2480  rgen2a  2584  ralrimivw  2604  reximdv  2631  rexlimdvw  2652  r19.32r  2677  reuind  3008  rabxmdc  3523  rexn0  3590  ssprsseq  3829  exmidn0m  4284  regexmidlem1  4624  finds1  4693  nn0suc  4695  nndceq0  4709  ssrel2  4808  poltletr  5128  fmptco  5800  nnsucsssuc  6636  map1  6963  1domsn  6974  pw2f1odclem  6991  fopwdom  6993  mapxpen  7005  fidifsnen  7028  eldju2ndl  7235  eldju2ndr  7236  difinfsnlem  7262  finomni  7303  fodjuomnilemdc  7307  pr2ne  7361  exmidfodomrlemim  7375  indpi  7525  nnindnn  8076  nnind  9122  nn1m1nn  9124  nn1gt1  9140  nn0n0n1ge2b  9522  nn0le2is012  9525  xrltnsym  9985  xrlttr  9987  xrltso  9988  xltnegi  10027  xsubge0  10073  fzospliti  10370  elfzonlteqm1  10411  qbtwnxr  10472  modfzo0difsn  10612  seqfveq2g  10694  monoord  10702  seqf1oglem1  10736  seqf1oglem2  10737  seqhomog  10747  seq3coll  11059  swrdswrd  11232  pfxccatin12lem3  11259  pfxccat3  11261  rexuz3  11496  rexanuz2  11497  fprodfac  12121  dvdsaddre2b  12347  dvdsle  12350  dvdsabseq  12353  nno  12412  nn0seqcvgd  12558  lcmdvds  12596  divgcdcoprm0  12618  exprmfct  12655  rpexp1i  12671  phibndlem  12733  prm23lt5  12781  pc2dvds  12848  pcz  12850  pcadd  12858  pcmptcl  12860  oddprmdvds  12872  4sqlem11  12919  ennnfoneleminc  12977  dfgrp3me  13628  mplsubgfilemm  14656  epttop  14758  xblss2ps  15072  xblss2  15073  blfps  15077  blf  15078  metrest  15174  cncfmptc  15264  dvmptfsum  15393  perfectlem2  15668  zabsle1  15672  lgsne0  15711  gausslemma2dlem0f  15727  gausslemma2dlem1a  15731  lgsquad2lem2  15755  lgsquad3  15757  2lgslem1a1  15759  2lgslem3  15774  2lgs  15777  2lgsoddprm  15786  2sqlem10  15798  ausgrusgrben  15960  bj-nn0suc0  16271  exmidsbthrlem  16349
  Copyright terms: Public domain W3C validator