ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 103) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  127  imbi2d  229  adantr  274  jctild  314  jctird  315  pm3.4  331  anbi2d  460  anbi1d  461  conax1k  644  mtod  653  pm2.76  798  dcim  831  condcOLD  844  pm5.18dc  873  pm2.54dc  881  pm2.85dc  895  dcor  925  anordc  946  xor3dc  1377  biassdc  1385  syl6ci  1433  hbequid  1501  19.30dc  1615  equsalh  1714  equvini  1746  nfsbxyt  1931  modc  2057  euan  2070  moexexdc  2098  nebidc  2415  rgen2a  2519  ralrimivw  2539  reximdv  2566  rexlimdvw  2586  r19.32r  2611  reuind  2930  rabxmdc  3439  rexn0  3506  exmidn0m  4179  regexmidlem1  4509  finds1  4578  nn0suc  4580  nndceq0  4594  ssrel2  4693  poltletr  5003  fmptco  5650  nnsucsssuc  6456  map1  6774  1domsn  6781  fopwdom  6798  mapxpen  6810  fidifsnen  6832  eldju2ndl  7033  eldju2ndr  7034  difinfsnlem  7060  finomni  7100  fodjuomnilemdc  7104  pr2ne  7144  exmidfodomrlemim  7153  indpi  7279  nnindnn  7830  nnind  8869  nn1m1nn  8871  nn1gt1  8887  nn0n0n1ge2b  9266  nn0le2is012  9269  xrltnsym  9725  xrlttr  9727  xrltso  9728  xltnegi  9767  xsubge0  9813  fzospliti  10107  elfzonlteqm1  10141  qbtwnxr  10189  modfzo0difsn  10326  monoord  10407  seq3coll  10751  rexuz3  10928  rexanuz2  10929  fprodfac  11552  dvdsle  11778  dvdsabseq  11781  nno  11839  nn0seqcvgd  11969  lcmdvds  12007  divgcdcoprm0  12029  exprmfct  12066  rpexp1i  12082  phibndlem  12144  prm23lt5  12191  pc2dvds  12257  pcz  12259  pcadd  12267  pcmptcl  12268  oddprmdvds  12280  ennnfoneleminc  12340  epttop  12690  xblss2ps  13004  xblss2  13005  blfps  13009  blf  13010  metrest  13106  cncfmptc  13182  zabsle1  13500  lgsne0  13539  2sqlem10  13561  bj-nn0suc0  13792  exmidsbthrlem  13861
  Copyright terms: Public domain W3C validator