ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  654  mtod  663  pm2.76  808  dcim  841  condcOLD  854  pm5.18dc  883  pm2.54dc  891  pm2.85dc  905  dcor  935  anordc  956  xor3dc  1387  biassdc  1395  syl6ci  1445  hbequid  1513  19.30dc  1627  equsalh  1726  equvini  1758  nfsbxyt  1943  modc  2069  euan  2082  moexexdc  2110  nebidc  2427  rgen2a  2531  ralrimivw  2551  reximdv  2578  rexlimdvw  2598  r19.32r  2623  reuind  2943  rabxmdc  3455  rexn0  3522  exmidn0m  4202  regexmidlem1  4533  finds1  4602  nn0suc  4604  nndceq0  4618  ssrel2  4717  poltletr  5030  fmptco  5683  nnsucsssuc  6493  map1  6812  1domsn  6819  fopwdom  6836  mapxpen  6848  fidifsnen  6870  eldju2ndl  7071  eldju2ndr  7072  difinfsnlem  7098  finomni  7138  fodjuomnilemdc  7142  pr2ne  7191  exmidfodomrlemim  7200  indpi  7341  nnindnn  7892  nnind  8935  nn1m1nn  8937  nn1gt1  8953  nn0n0n1ge2b  9332  nn0le2is012  9335  xrltnsym  9793  xrlttr  9795  xrltso  9796  xltnegi  9835  xsubge0  9881  fzospliti  10176  elfzonlteqm1  10210  qbtwnxr  10258  modfzo0difsn  10395  monoord  10476  seq3coll  10822  rexuz3  10999  rexanuz2  11000  fprodfac  11623  dvdsaddre2b  11848  dvdsle  11850  dvdsabseq  11853  nno  11911  nn0seqcvgd  12041  lcmdvds  12079  divgcdcoprm0  12101  exprmfct  12138  rpexp1i  12154  phibndlem  12216  prm23lt5  12263  pc2dvds  12329  pcz  12331  pcadd  12339  pcmptcl  12340  oddprmdvds  12352  ennnfoneleminc  12412  dfgrp3me  12970  epttop  13593  xblss2ps  13907  xblss2  13908  blfps  13912  blf  13913  metrest  14009  cncfmptc  14085  zabsle1  14403  lgsne0  14442  2sqlem10  14475  bj-nn0suc0  14705  exmidsbthrlem  14773
  Copyright terms: Public domain W3C validator