ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 103) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  127  imbi2d  229  adantr  274  jctild  314  jctird  315  pm3.4  331  anbi2d  461  anbi1d  462  conax1k  649  mtod  658  pm2.76  803  dcim  836  condcOLD  849  pm5.18dc  878  pm2.54dc  886  pm2.85dc  900  dcor  930  anordc  951  xor3dc  1382  biassdc  1390  syl6ci  1438  hbequid  1506  19.30dc  1620  equsalh  1719  equvini  1751  nfsbxyt  1936  modc  2062  euan  2075  moexexdc  2103  nebidc  2420  rgen2a  2524  ralrimivw  2544  reximdv  2571  rexlimdvw  2591  r19.32r  2616  reuind  2935  rabxmdc  3445  rexn0  3512  exmidn0m  4185  regexmidlem1  4515  finds1  4584  nn0suc  4586  nndceq0  4600  ssrel2  4699  poltletr  5009  fmptco  5659  nnsucsssuc  6468  map1  6786  1domsn  6793  fopwdom  6810  mapxpen  6822  fidifsnen  6844  eldju2ndl  7045  eldju2ndr  7046  difinfsnlem  7072  finomni  7112  fodjuomnilemdc  7116  pr2ne  7156  exmidfodomrlemim  7165  indpi  7291  nnindnn  7842  nnind  8881  nn1m1nn  8883  nn1gt1  8899  nn0n0n1ge2b  9278  nn0le2is012  9281  xrltnsym  9737  xrlttr  9739  xrltso  9740  xltnegi  9779  xsubge0  9825  fzospliti  10119  elfzonlteqm1  10153  qbtwnxr  10201  modfzo0difsn  10338  monoord  10419  seq3coll  10764  rexuz3  10941  rexanuz2  10942  fprodfac  11565  dvdsle  11791  dvdsabseq  11794  nno  11852  nn0seqcvgd  11982  lcmdvds  12020  divgcdcoprm0  12042  exprmfct  12079  rpexp1i  12095  phibndlem  12157  prm23lt5  12204  pc2dvds  12270  pcz  12272  pcadd  12280  pcmptcl  12281  oddprmdvds  12293  ennnfoneleminc  12353  epttop  12843  xblss2ps  13157  xblss2  13158  blfps  13162  blf  13163  metrest  13259  cncfmptc  13335  zabsle1  13653  lgsne0  13692  2sqlem10  13714  bj-nn0suc0  13945  exmidsbthrlem  14014
  Copyright terms: Public domain W3C validator