ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d Unicode version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here  ph would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
a1d  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2  |-  ( ph  ->  ps )
2 ax-1 6 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  655  mtod  664  pm2.76  809  dcim  842  condcOLD  855  pm5.18dc  884  pm2.54dc  892  pm2.85dc  906  dcor  937  anordc  958  xor3dc  1406  biassdc  1414  syl6ci  1464  hbequid  1535  19.30dc  1649  equsalh  1748  equvini  1780  nfsbxyt  1970  modc  2096  euan  2109  moexexdc  2137  nebidc  2455  rgen2a  2559  ralrimivw  2579  reximdv  2606  rexlimdvw  2626  r19.32r  2651  reuind  2977  rabxmdc  3491  rexn0  3558  exmidn0m  4244  regexmidlem1  4580  finds1  4649  nn0suc  4651  nndceq0  4665  ssrel2  4764  poltletr  5082  fmptco  5745  nnsucsssuc  6577  map1  6903  1domsn  6913  pw2f1odclem  6930  fopwdom  6932  mapxpen  6944  fidifsnen  6966  eldju2ndl  7173  eldju2ndr  7174  difinfsnlem  7200  finomni  7241  fodjuomnilemdc  7245  pr2ne  7299  exmidfodomrlemim  7308  indpi  7454  nnindnn  8005  nnind  9051  nn1m1nn  9053  nn1gt1  9069  nn0n0n1ge2b  9451  nn0le2is012  9454  xrltnsym  9914  xrlttr  9916  xrltso  9917  xltnegi  9956  xsubge0  10002  fzospliti  10298  elfzonlteqm1  10337  qbtwnxr  10398  modfzo0difsn  10538  seqfveq2g  10620  monoord  10628  seqf1oglem1  10662  seqf1oglem2  10663  seqhomog  10673  seq3coll  10985  rexuz3  11272  rexanuz2  11273  fprodfac  11897  dvdsaddre2b  12123  dvdsle  12126  dvdsabseq  12129  nno  12188  nn0seqcvgd  12334  lcmdvds  12372  divgcdcoprm0  12394  exprmfct  12431  rpexp1i  12447  phibndlem  12509  prm23lt5  12557  pc2dvds  12624  pcz  12626  pcadd  12634  pcmptcl  12636  oddprmdvds  12648  4sqlem11  12695  ennnfoneleminc  12753  dfgrp3me  13403  mplsubgfilemm  14431  epttop  14533  xblss2ps  14847  xblss2  14848  blfps  14852  blf  14853  metrest  14949  cncfmptc  15039  dvmptfsum  15168  perfectlem2  15443  zabsle1  15447  lgsne0  15486  gausslemma2dlem0f  15502  gausslemma2dlem1a  15506  lgsquad2lem2  15530  lgsquad3  15532  2lgslem1a1  15534  2lgslem3  15549  2lgs  15552  2lgsoddprm  15561  2sqlem10  15573  bj-nn0suc0  15848  exmidsbthrlem  15923
  Copyright terms: Public domain W3C validator