ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.17 GIF version

Theorem 19.17 1549
Description: Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.17.1 𝑥𝜓
Assertion
Ref Expression
19.17 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))

Proof of Theorem 19.17
StepHypRef Expression
1 albi 1461 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
2 19.17.1 . . 3 𝑥𝜓
3219.3 1547 . 2 (∀𝑥𝜓𝜓)
41, 3bitrdi 195 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346  wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator