| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 19.21h | GIF version | ||
| Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". New proofs should use 19.21 1597 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| 19.21h.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| Ref | Expression | 
|---|---|
| 19.21h | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.21h.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alim 1471 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | syl5 32 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | 
| 4 | hba1 1554 | . . . 4 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
| 5 | 1, 4 | hbim 1559 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → ∀𝑥𝜓)) | 
| 6 | ax-4 1524 | . . . 4 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 7 | 6 | imim2i 12 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (𝜑 → 𝜓)) | 
| 8 | 5, 7 | alrimih 1483 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | 
| 9 | 3, 8 | impbii 126 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: hbim1 1584 nf3 1683 19.21v 1887 | 
| Copyright terms: Public domain | W3C validator |