| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > albi | GIF version | ||
| Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| albi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimp 118 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | al2imi 1472 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | 
| 3 | biimpr 130 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | 3 | al2imi 1472 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑)) | 
| 5 | 2, 4 | impbid 129 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: albii 1484 albidh 1494 19.16 1569 19.17 1570 intmin4 3902 dfiin2g 3949 | 
| Copyright terms: Public domain | W3C validator |