Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.21-2 | GIF version |
Description: Theorem 19.21 of [Margaris] p. 90 but with 2 quantifiers. (Contributed by NM, 4-Feb-2005.) |
Ref | Expression |
---|---|
19.21-2.1 | ⊢ Ⅎ𝑥𝜑 |
19.21-2.2 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
19.21-2 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21-2.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | 19.21 1571 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓)) |
3 | 2 | albii 1458 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓)) |
4 | 19.21-2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | 19.21 1571 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (𝜑 → ∀𝑥∀𝑦𝜓)) |
6 | 3, 5 | bitri 183 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥∀𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |