ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21-2 GIF version

Theorem 19.21-2 1660
Description: Theorem 19.21 of [Margaris] p. 90 but with 2 quantifiers. (Contributed by NM, 4-Feb-2005.)
Hypotheses
Ref Expression
19.21-2.1 𝑥𝜑
19.21-2.2 𝑦𝜑
Assertion
Ref Expression
19.21-2 (∀𝑥𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))

Proof of Theorem 19.21-2
StepHypRef Expression
1 19.21-2.2 . . . 4 𝑦𝜑
2119.21 1576 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑦𝜓))
32albii 1463 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓))
4 19.21-2.1 . . 3 𝑥𝜑
5419.21 1576 . 2 (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))
63, 5bitri 183 1 (∀𝑥𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346  wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator