| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.21 | GIF version | ||
| Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| 19.21.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.21 | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 19.21t 1604 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: stdpc5 1606 19.21-2 1689 19.32dc 1701 cbv1 1767 cbv1v 1769 eu2 2097 mo3h 2106 moanim 2127 r2alf 2522 |
| Copyright terms: Public domain | W3C validator |