Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > albii | GIF version |
Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
albii | ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1461 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | |
2 | albii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1444 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2albii 1464 hbxfrbi 1465 nfbii 1466 19.26-2 1475 19.26-3an 1476 alrot3 1478 alrot4 1479 albiim 1480 2albiim 1481 alnex 1492 nfalt 1571 aaanh 1579 aaan 1580 alinexa 1596 exintrbi 1626 19.21-2 1660 19.31r 1674 equsalh 1719 equsal 1720 equsalv 1786 sbcof2 1803 dvelimfALT2 1810 19.23vv 1877 sbanv 1882 pm11.53 1888 nfsbxy 1935 nfsbxyt 1936 sbcomxyyz 1965 sb9 1972 sbnf2 1974 2sb6 1977 sbcom2v 1978 sb6a 1981 2sb6rf 1983 sbalyz 1992 sbal 1993 sbal1yz 1994 sbal1 1995 sbalv 1998 2exsb 2002 nfsb4t 2007 dvelimf 2008 dveeq1 2012 sbal2 2013 sb8eu 2032 sb8euh 2042 eu1 2044 eu2 2063 mo3h 2072 moanim 2093 2eu4 2112 exists1 2115 eqcom 2172 hblem 2278 abeq2 2279 abeq1 2280 nfceqi 2308 abid2f 2338 dfrex2dc 2461 ralbii2 2480 r2alf 2487 nfraldya 2505 r3al 2514 r19.21t 2545 r19.23t 2577 rabid2 2646 rabbi 2647 ralv 2747 ceqsralt 2757 gencbval 2778 rspc2gv 2846 ralab 2890 ralrab2 2895 euind 2917 reu2 2918 reu3 2920 rmo4 2923 reu8 2926 rmo3f 2927 rmoim 2931 2reuswapdc 2934 reuind 2935 2rmorex 2936 ra5 3043 rmo2ilem 3044 rmo3 3046 dfss2 3136 ss2ab 3215 ss2rab 3223 rabss 3224 uniiunlem 3236 dfdif3 3237 ddifstab 3259 ssequn1 3297 unss 3301 ralunb 3308 ssin 3349 ssddif 3361 n0rf 3427 eq0 3433 eqv 3434 rabeq0 3444 abeq0 3445 disj 3463 disj3 3467 rgenm 3517 pwss 3582 ralsnsg 3620 ralsns 3621 disjsn 3645 euabsn2 3652 snss 3709 snsssn 3748 dfnfc2 3814 uni0b 3821 unissb 3826 elintrab 3843 ssintrab 3854 intun 3862 intpr 3863 dfiin2g 3906 iunss 3914 dfdisj2 3968 cbvdisj 3976 disjnim 3980 dftr2 4089 dftr5 4090 trint 4102 zfnuleu 4113 vnex 4120 inex1 4123 repizf2lem 4147 axpweq 4157 zfpow 4161 axpow2 4162 axpow3 4163 exmid01 4184 zfpair2 4195 ssextss 4205 frirrg 4335 sucel 4395 zfun 4419 uniex2 4421 setindel 4522 setind 4523 elirr 4525 en2lp 4538 zfregfr 4558 tfi 4566 peano5 4582 ssrel 4699 ssrel2 4701 eqrelrel 4712 reliun 4732 raliunxp 4752 relop 4761 dmopab3 4824 dm0rn0 4828 reldm0 4829 cotr 4992 issref 4993 asymref 4996 intirr 4997 sb8iota 5167 dffun2 5208 dffun4 5209 dffun6f 5211 dffun4f 5214 dffun7 5225 funopab 5233 funcnv2 5258 funcnv 5259 funcnveq 5261 fun2cnv 5262 fun11 5265 fununi 5266 funcnvuni 5267 funimaexglem 5281 fnres 5314 fnopabg 5321 rexrnmpt 5639 dff13 5747 oprabidlem 5884 eqoprab2b 5911 mpo2eqb 5962 ralrnmpo 5967 dfer2 6514 pw1dc0el 6889 fiintim 6906 omniwomnimkv 7143 ltexprlemdisj 7568 recexprlemdisj 7592 nnwosdc 11994 isprm2 12071 bj-stal 13784 bj-nfalt 13799 bdceq 13877 bdcriota 13918 bj-axempty2 13929 bj-vprc 13931 bdinex1 13934 bj-zfpair2 13945 bj-uniex2 13951 bj-ssom 13971 bj-inf2vnlem2 14006 ss1oel2o 14026 |
Copyright terms: Public domain | W3C validator |