| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albii | GIF version | ||
| Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| albii | ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi 1514 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | |
| 2 | albii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1497 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2albii 1517 hbxfrbi 1518 nfbii 1519 19.26-2 1528 19.26-3an 1529 alrot3 1531 alrot4 1532 albiim 1533 2albiim 1534 alnex 1545 nfalt 1624 aaanh 1632 aaan 1633 alinexa 1649 exintrbi 1679 19.21-2 1713 19.31r 1727 equsalh 1772 equsal 1773 equsalv 1839 sbcof2 1856 dvelimfALT2 1863 19.23vv 1930 sbanv 1936 pm11.53 1942 nfsbxy 1993 nfsbxyt 1994 sbcomxyyz 2023 sb9 2030 sbnf2 2032 2sb6 2035 sbcom2v 2036 sb6a 2039 2sb6rf 2041 sbalyz 2050 sbal 2051 sbal1yz 2052 sbal1 2053 sbalv 2056 2exsb 2060 nfsb4t 2065 dvelimf 2066 dveeq1 2070 sbal2 2071 sb8eu 2090 sb8euh 2100 eu1 2102 eu2 2122 mo3h 2131 moanim 2152 2eu4 2171 exists1 2174 eqcom 2231 hblem 2337 abeq2 2338 abeq1 2339 nfceqi 2368 abid2f 2398 dfrex2dc 2521 ralbii2 2540 r2alf 2547 nfraldya 2565 r3al 2574 r19.21t 2605 r19.23t 2638 rabid2 2708 rabbi 2709 ralv 2817 ceqsralt 2827 gencbval 2849 rspc2gv 2919 ralab 2963 ralrab2 2968 euind 2990 reu2 2991 reu3 2993 rmo4 2996 reu8 2999 rmo3f 3000 rmoim 3004 2reuswapdc 3007 reuind 3008 2rmorex 3009 ra5 3118 rmo2ilem 3119 rmo3 3121 ssalel 3212 ss2ab 3292 ss2rab 3300 rabss 3301 uniiunlem 3313 dfdif3 3314 ddifstab 3336 ssequn1 3374 unss 3378 ralunb 3385 ssin 3426 ssddif 3438 n0rf 3504 eq0 3510 eqv 3511 rabeq0 3521 abeq0 3522 disj 3540 disj3 3544 pwss 3665 ralsnsg 3703 ralsns 3704 disjsn 3728 euabsn2 3735 snssOLD 3793 snssb 3800 snsssn 3838 dfnfc2 3905 uni0b 3912 unissb 3917 elintrab 3934 ssintrab 3945 intun 3953 intpr 3954 dfiin2g 3997 iunss 4005 dfdisj2 4060 cbvdisj 4068 disjnim 4072 dftr2 4183 dftr5 4184 trint 4196 zfnuleu 4207 vnex 4214 inex1 4217 repizf2lem 4244 axpweq 4254 zfpow 4258 axpow2 4259 axpow3 4260 exmid01 4281 zfpair2 4293 ssextss 4305 frirrg 4438 sucel 4498 zfun 4522 uniex2 4524 setindel 4627 setind 4628 elirr 4630 en2lp 4643 zfregfr 4663 tfi 4671 peano5 4687 ssrel 4804 ssrel2 4806 eqrelrel 4817 reliun 4837 raliunxp 4860 relop 4869 dmopab3 4933 dm0rn0 4937 reldm0 4938 cotr 5106 issref 5107 asymref 5110 intirr 5111 sb8iota 5282 dffun2 5324 dffun4 5325 dffun6f 5327 dffun4f 5330 dffun7 5341 funopab 5349 funcnv2 5377 funcnv 5378 funcnveq 5380 fun2cnv 5381 fun11 5384 fununi 5385 funcnvuni 5386 funimaexglem 5400 fnres 5436 fnopabg 5443 rexrnmpt 5771 dff13 5885 iotaexel 5952 oprabidlem 6025 eqoprab2b 6053 mpo2eqb 6105 ralrnmpo 6110 dfer2 6671 pw1dc0el 7061 fiintim 7081 omniwomnimkv 7322 ltexprlemdisj 7781 recexprlemdisj 7805 nnwosdc 12546 isprm2 12625 ivthdich 15312 bj-stal 16043 bj-nfalt 16058 bdceq 16135 bdcriota 16176 bj-axempty2 16187 bj-vprc 16189 bdinex1 16192 bj-zfpair2 16203 bj-uniex2 16209 bj-ssom 16229 bj-inf2vnlem2 16264 ss1oel2o 16285 |
| Copyright terms: Public domain | W3C validator |