| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albii | GIF version | ||
| Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| albii | ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi 1482 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | |
| 2 | albii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1465 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2albii 1485 hbxfrbi 1486 nfbii 1487 19.26-2 1496 19.26-3an 1497 alrot3 1499 alrot4 1500 albiim 1501 2albiim 1502 alnex 1513 nfalt 1592 aaanh 1600 aaan 1601 alinexa 1617 exintrbi 1647 19.21-2 1681 19.31r 1695 equsalh 1740 equsal 1741 equsalv 1807 sbcof2 1824 dvelimfALT2 1831 19.23vv 1898 sbanv 1904 pm11.53 1910 nfsbxy 1961 nfsbxyt 1962 sbcomxyyz 1991 sb9 1998 sbnf2 2000 2sb6 2003 sbcom2v 2004 sb6a 2007 2sb6rf 2009 sbalyz 2018 sbal 2019 sbal1yz 2020 sbal1 2021 sbalv 2024 2exsb 2028 nfsb4t 2033 dvelimf 2034 dveeq1 2038 sbal2 2039 sb8eu 2058 sb8euh 2068 eu1 2070 eu2 2089 mo3h 2098 moanim 2119 2eu4 2138 exists1 2141 eqcom 2198 hblem 2304 abeq2 2305 abeq1 2306 nfceqi 2335 abid2f 2365 dfrex2dc 2488 ralbii2 2507 r2alf 2514 nfraldya 2532 r3al 2541 r19.21t 2572 r19.23t 2604 rabid2 2674 rabbi 2675 ralv 2780 ceqsralt 2790 gencbval 2812 rspc2gv 2880 ralab 2924 ralrab2 2929 euind 2951 reu2 2952 reu3 2954 rmo4 2957 reu8 2960 rmo3f 2961 rmoim 2965 2reuswapdc 2968 reuind 2969 2rmorex 2970 ra5 3078 rmo2ilem 3079 rmo3 3081 ssalel 3172 ss2ab 3252 ss2rab 3260 rabss 3261 uniiunlem 3273 dfdif3 3274 ddifstab 3296 ssequn1 3334 unss 3338 ralunb 3345 ssin 3386 ssddif 3398 n0rf 3464 eq0 3470 eqv 3471 rabeq0 3481 abeq0 3482 disj 3500 disj3 3504 pwss 3622 ralsnsg 3660 ralsns 3661 disjsn 3685 euabsn2 3692 snssOLD 3749 snssb 3756 snsssn 3792 dfnfc2 3858 uni0b 3865 unissb 3870 elintrab 3887 ssintrab 3898 intun 3906 intpr 3907 dfiin2g 3950 iunss 3958 dfdisj2 4013 cbvdisj 4021 disjnim 4025 dftr2 4134 dftr5 4135 trint 4147 zfnuleu 4158 vnex 4165 inex1 4168 repizf2lem 4195 axpweq 4205 zfpow 4209 axpow2 4210 axpow3 4211 exmid01 4232 zfpair2 4244 ssextss 4254 frirrg 4386 sucel 4446 zfun 4470 uniex2 4472 setindel 4575 setind 4576 elirr 4578 en2lp 4591 zfregfr 4611 tfi 4619 peano5 4635 ssrel 4752 ssrel2 4754 eqrelrel 4765 reliun 4785 raliunxp 4808 relop 4817 dmopab3 4880 dm0rn0 4884 reldm0 4885 cotr 5052 issref 5053 asymref 5056 intirr 5057 sb8iota 5227 dffun2 5269 dffun4 5270 dffun6f 5272 dffun4f 5275 dffun7 5286 funopab 5294 funcnv2 5319 funcnv 5320 funcnveq 5322 fun2cnv 5323 fun11 5326 fununi 5327 funcnvuni 5328 funimaexglem 5342 fnres 5377 fnopabg 5384 rexrnmpt 5708 dff13 5818 iotaexel 5885 oprabidlem 5956 eqoprab2b 5984 mpo2eqb 6036 ralrnmpo 6041 dfer2 6602 pw1dc0el 6981 fiintim 7001 omniwomnimkv 7242 ltexprlemdisj 7690 recexprlemdisj 7714 nnwosdc 12231 isprm2 12310 ivthdich 14973 bj-stal 15479 bj-nfalt 15494 bdceq 15572 bdcriota 15613 bj-axempty2 15624 bj-vprc 15626 bdinex1 15629 bj-zfpair2 15640 bj-uniex2 15646 bj-ssom 15666 bj-inf2vnlem2 15701 ss1oel2o 15722 |
| Copyright terms: Public domain | W3C validator |