| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albii | GIF version | ||
| Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| albii | ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi 1514 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | |
| 2 | albii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1497 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2albii 1517 hbxfrbi 1518 nfbii 1519 19.26-2 1528 19.26-3an 1529 alrot3 1531 alrot4 1532 albiim 1533 2albiim 1534 alnex 1545 nfalt 1624 aaanh 1632 aaan 1633 alinexa 1649 exintrbi 1679 19.21-2 1713 19.31r 1727 equsalh 1772 equsal 1773 equsalv 1839 sbcof2 1856 dvelimfALT2 1863 19.23vv 1930 sbanv 1936 pm11.53 1942 nfsbxy 1993 nfsbxyt 1994 sbcomxyyz 2023 sb9 2030 sbnf2 2032 2sb6 2035 sbcom2v 2036 sb6a 2039 2sb6rf 2041 sbalyz 2050 sbal 2051 sbal1yz 2052 sbal1 2053 sbalv 2056 2exsb 2060 nfsb4t 2065 dvelimf 2066 dveeq1 2070 sbal2 2071 sb8eu 2090 sb8euh 2100 eu1 2102 eu2 2122 mo3h 2131 moanim 2152 2eu4 2171 exists1 2174 eqcom 2231 hblem 2337 abeq2 2338 abeq1 2339 nfceqi 2368 abid2f 2398 dfrex2dc 2521 ralbii2 2540 r2alf 2547 nfraldya 2565 r3al 2574 r19.21t 2605 r19.23t 2638 rabid2 2708 rabbi 2709 ralv 2817 ceqsralt 2827 gencbval 2849 rspc2gv 2919 ralab 2963 ralrab2 2968 euind 2990 reu2 2991 reu3 2993 rmo4 2996 reu8 2999 rmo3f 3000 rmoim 3004 2reuswapdc 3007 reuind 3008 2rmorex 3009 ra5 3118 rmo2ilem 3119 rmo3 3121 ssalel 3212 ss2ab 3292 ss2rab 3300 rabss 3301 uniiunlem 3313 dfdif3 3314 ddifstab 3336 ssequn1 3374 unss 3378 ralunb 3385 ssin 3426 ssddif 3438 n0rf 3504 eq0 3510 eqv 3511 rabeq0 3521 abeq0 3522 disj 3540 disj3 3544 pwss 3665 ralsnsg 3703 ralsns 3704 disjsn 3728 euabsn2 3735 snssOLD 3794 snssb 3801 snsssn 3839 dfnfc2 3906 uni0b 3913 unissb 3918 elintrab 3935 ssintrab 3946 intun 3954 intpr 3955 dfiin2g 3998 iunss 4006 dfdisj2 4061 cbvdisj 4069 disjnim 4073 dftr2 4184 dftr5 4185 trint 4197 zfnuleu 4208 vnex 4215 inex1 4218 repizf2lem 4245 axpweq 4255 zfpow 4259 axpow2 4260 axpow3 4261 exmid01 4282 zfpair2 4294 ssextss 4306 frirrg 4441 sucel 4501 zfun 4525 uniex2 4527 setindel 4630 setind 4631 elirr 4633 en2lp 4646 zfregfr 4666 tfi 4674 peano5 4690 ssrel 4807 ssrel2 4809 eqrelrel 4820 reliun 4840 raliunxp 4863 relop 4872 dmopab3 4936 dm0rn0 4940 reldm0 4941 cotr 5110 issref 5111 asymref 5114 intirr 5115 sb8iota 5286 dffun2 5328 dffun4 5329 dffun6f 5331 dffun4f 5334 dffun7 5345 funopab 5353 funcnv2 5381 funcnv 5382 funcnveq 5384 fun2cnv 5385 fun11 5388 fununi 5389 funcnvuni 5390 funimaexglem 5404 fnres 5440 fnopabg 5447 rexrnmpt 5780 dff13 5898 iotaexel 5965 oprabidlem 6038 eqoprab2b 6068 mpo2eqb 6120 ralrnmpo 6125 dfer2 6689 pw1dc0el 7081 fiintim 7101 omniwomnimkv 7342 ltexprlemdisj 7801 recexprlemdisj 7825 nnwosdc 12568 isprm2 12647 ivthdich 15335 bj-stal 16137 bj-nfalt 16152 bdceq 16229 bdcriota 16270 bj-axempty2 16281 bj-vprc 16283 bdinex1 16286 bj-zfpair2 16297 bj-uniex2 16303 bj-ssom 16323 bj-inf2vnlem2 16358 ss1oel2o 16380 |
| Copyright terms: Public domain | W3C validator |