| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albii | GIF version | ||
| Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| albii | ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi 1492 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | |
| 2 | albii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1475 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2albii 1495 hbxfrbi 1496 nfbii 1497 19.26-2 1506 19.26-3an 1507 alrot3 1509 alrot4 1510 albiim 1511 2albiim 1512 alnex 1523 nfalt 1602 aaanh 1610 aaan 1611 alinexa 1627 exintrbi 1657 19.21-2 1691 19.31r 1705 equsalh 1750 equsal 1751 equsalv 1817 sbcof2 1834 dvelimfALT2 1841 19.23vv 1908 sbanv 1914 pm11.53 1920 nfsbxy 1971 nfsbxyt 1972 sbcomxyyz 2001 sb9 2008 sbnf2 2010 2sb6 2013 sbcom2v 2014 sb6a 2017 2sb6rf 2019 sbalyz 2028 sbal 2029 sbal1yz 2030 sbal1 2031 sbalv 2034 2exsb 2038 nfsb4t 2043 dvelimf 2044 dveeq1 2048 sbal2 2049 sb8eu 2068 sb8euh 2078 eu1 2080 eu2 2099 mo3h 2108 moanim 2129 2eu4 2148 exists1 2151 eqcom 2208 hblem 2314 abeq2 2315 abeq1 2316 nfceqi 2345 abid2f 2375 dfrex2dc 2498 ralbii2 2517 r2alf 2524 nfraldya 2542 r3al 2551 r19.21t 2582 r19.23t 2614 rabid2 2684 rabbi 2685 ralv 2791 ceqsralt 2801 gencbval 2823 rspc2gv 2891 ralab 2935 ralrab2 2940 euind 2962 reu2 2963 reu3 2965 rmo4 2968 reu8 2971 rmo3f 2972 rmoim 2976 2reuswapdc 2979 reuind 2980 2rmorex 2981 ra5 3089 rmo2ilem 3090 rmo3 3092 ssalel 3183 ss2ab 3263 ss2rab 3271 rabss 3272 uniiunlem 3284 dfdif3 3285 ddifstab 3307 ssequn1 3345 unss 3349 ralunb 3356 ssin 3397 ssddif 3409 n0rf 3475 eq0 3481 eqv 3482 rabeq0 3492 abeq0 3493 disj 3511 disj3 3515 pwss 3634 ralsnsg 3672 ralsns 3673 disjsn 3697 euabsn2 3704 snssOLD 3762 snssb 3769 snsssn 3805 dfnfc2 3871 uni0b 3878 unissb 3883 elintrab 3900 ssintrab 3911 intun 3919 intpr 3920 dfiin2g 3963 iunss 3971 dfdisj2 4026 cbvdisj 4034 disjnim 4038 dftr2 4149 dftr5 4150 trint 4162 zfnuleu 4173 vnex 4180 inex1 4183 repizf2lem 4210 axpweq 4220 zfpow 4224 axpow2 4225 axpow3 4226 exmid01 4247 zfpair2 4259 ssextss 4269 frirrg 4402 sucel 4462 zfun 4486 uniex2 4488 setindel 4591 setind 4592 elirr 4594 en2lp 4607 zfregfr 4627 tfi 4635 peano5 4651 ssrel 4768 ssrel2 4770 eqrelrel 4781 reliun 4801 raliunxp 4824 relop 4833 dmopab3 4897 dm0rn0 4901 reldm0 4902 cotr 5070 issref 5071 asymref 5074 intirr 5075 sb8iota 5245 dffun2 5287 dffun4 5288 dffun6f 5290 dffun4f 5293 dffun7 5304 funopab 5312 funcnv2 5340 funcnv 5341 funcnveq 5343 fun2cnv 5344 fun11 5347 fununi 5348 funcnvuni 5349 funimaexglem 5363 fnres 5399 fnopabg 5406 rexrnmpt 5733 dff13 5847 iotaexel 5914 oprabidlem 5985 eqoprab2b 6013 mpo2eqb 6065 ralrnmpo 6070 dfer2 6631 pw1dc0el 7020 fiintim 7040 omniwomnimkv 7281 ltexprlemdisj 7732 recexprlemdisj 7756 nnwosdc 12410 isprm2 12489 ivthdich 15175 bj-stal 15799 bj-nfalt 15814 bdceq 15892 bdcriota 15933 bj-axempty2 15944 bj-vprc 15946 bdinex1 15949 bj-zfpair2 15960 bj-uniex2 15966 bj-ssom 15986 bj-inf2vnlem2 16021 ss1oel2o 16042 |
| Copyright terms: Public domain | W3C validator |