ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf2 GIF version

Theorem nf2 1692
Description: An alternate definition of df-nf 1485, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.)
Assertion
Ref Expression
nf2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))

Proof of Theorem nf2
StepHypRef Expression
1 df-nf 1485 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfa1 1565 . . . 4 𝑥𝑥𝜑
32nfri 1543 . . 3 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
4319.23h 1522 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
51, 4bitri 184 1 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wnf 1484  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  nf3  1693  nf4dc  1694  nf4r  1695  nfd2  2051  eusv2i  4515
  Copyright terms: Public domain W3C validator