| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nf2 | GIF version | ||
| Description: An alternate definition of df-nf 1475, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nf2 | ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | nfa1 1555 | . . . 4 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 3 | 2 | nfri 1533 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| 4 | 3 | 19.23h 1512 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nf3 1683 nf4dc 1684 nf4r 1685 nfd2 2041 eusv2i 4490 |
| Copyright terms: Public domain | W3C validator |