Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nf2 | GIF version |
Description: An alternate definition of df-nf 1449, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nf2 | ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1449 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nfa1 1529 | . . . 4 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
3 | 2 | nfri 1507 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
4 | 3 | 19.23h 1486 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
5 | 1, 4 | bitri 183 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nf3 1657 nf4dc 1658 nf4r 1659 nfd2 2010 eusv2i 4433 |
Copyright terms: Public domain | W3C validator |