ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf2 GIF version

Theorem nf2 1627
Description: An alternate definition of df-nf 1418, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.)
Assertion
Ref Expression
nf2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))

Proof of Theorem nf2
StepHypRef Expression
1 df-nf 1418 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfa1 1502 . . . 4 𝑥𝑥𝜑
32nfri 1480 . . 3 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
4319.23h 1455 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
51, 4bitri 183 1 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1310  wnf 1417  wex 1449
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1406  ax-ie2 1451  ax-4 1468  ax-ial 1495
This theorem depends on definitions:  df-bi 116  df-nf 1418
This theorem is referenced by:  nf3  1628  nf4dc  1629  nf4r  1630  eusv2i  4334
  Copyright terms: Public domain W3C validator